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Introduction

I We introduce an attractor-based complexity measure and learn-
ing procedure for Boolean recurrent neural networks.

I We illustrate these concepts in a simplified Boolean model of
the basal ganglia-thalamocortical network.
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Boolean Recurrent Neural Network
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Attractors and Cycles
Boolean Neural Network Automaton
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Attractor-Based Complexity of RNNs

I We assume that some aspects of the computational capabili-
ties of recurrent neural networks are related to their attractor
dynamics.

I We introduce attractor-based complexity measure inspired from
automata theory.

I We assume that the attractors are classified into two categories:
meaningful or spurious.

I The attractor-based complexity refers to the maximal number
of meaningful and spurious attractors that are included one into
the other.
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Attractor-Based Complexity of BRNNs
Example:

I Assume that N contains only one meaningful attractor; all oth-
ers being spurious.

I Then, the attractor-based complexity of N is 3. Maximal “grow-

ing” and “alternating” sequence of 3 attractors.
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Boolean Model of the Basal Ganglia-
Thalamocortical Network
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Boolean Model of the Basal Ganglia-
Thalamocortical Network

Source Target (Node #)

Node # (Name) 0 1 2 3 4 5 6 7 8 9

0 (IN) · 1 1 · · · · · · ·
1 (SC) int1 · 1 · · · · · · ·
2 (Thalamus) · · · 1 · 1 1 1 1 1

3 (RTN) · · -1 · · · · · · ·
4 (GPi/SNr) · -1 -1 -1 · · · · · ·
5 (STN) · · · · 2 · 2 · · 2

6 (GPe) · · · -1/2 -1/2 -1/2 · -1/2 -1/2 ·
7 (Str-D2) · · · · · · -1 · · ·
8 (Str-D1) · · · · -1/2 · -1/2 · · ·
9 (CCortex) int2 1/2 1/2 1/2 · 1/2 · 1/2 1/2 ·

Table: Adjancency matrix
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Corresponding Automaton
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Attractor-Based Complexity

Meaningfulness criterion

I A constitutive cycle – i.e., a basic attractor – is spurious if it
is characterised either by active SC and quiet Thalamus at the
same time step, or by a quiet GPi/SNr during the majority of
the duration of the cycle.

I A constitutive cycle is meaningful otherwise.

I A non-constitutive cycle – i.e., a composed attractor – is con-
sidered meaningful if it contains a majority of meaningful con-
stitutive cycles.

I A non-constitutive cycle is spurious otherwise.
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I A constitutive cycle is meaningful otherwise.

I A non-constitutive cycle – i.e., a composed attractor – is con-
sidered meaningful if it contains a majority of meaningful con-
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Attractor-Based Complexity
I In the corresponding automaton, we have a maximal ‘growing”

and “alternating” sequence of 7 cycles (attractors).

Attractor-based
complexity

degree 7
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Synaptic Plasticity’s Influence on the
Network’s Attractors
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Number of Attractors (fct of int. weights):
global threshold (or weights) modifications

Lowering the global threshold, i.e., potentiating the global synaptic
level, increases the maximal numbers of attractors and improves
the robustness of the “no interactivity” configuration.
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Attractor Complexity (fct of int. weights):
local weights modifications

Even single weight variations of ±0.1 can significantly affect the
complexity pattern.

Attractor-Based Complexity and Learning in BRNNs Jérémie Cabessa



Introduction Boolean RNNs and Automata Attractor Complexity BGT Net SP & Attractors Conclusion

Input discrimination
I An input stream s is discriminated by a sequence of attractors
C = (C0, . . . , Cn) if the network, when receiving input s stream
s, visits the successive attractors C0, . . . , Cn of C.

I The discriminability degree of s, d∗(s), is the length of a max-
imal sequence of attractors C that discriminates s.

input stream s
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Input discrimination

I We introduce an attractor-based learning procedure which up-
dates the (interactive) network’s weights in order to achieve a
targeted discriminability degree of some input stream s.

Algorithm 1 Attractor-based learning procedure

Require: input stream s; initial weights w1, w2; target discriminability degree N∗

1: compute d∗(s)

2: while d∗(s) < N∗ do

3: wk ← f(wk), for k = 1, . . . , N

4: compute d∗(s) for the network with updated weights wk, for k = 1, . . . , N

5: end while

6: return wk, for k = 1, . . . , N

f(wk) = wk + step · −sum(ms)

len(ms)
·
(
1 +

len(ms)− d∗(s)
len(ms)

)
+ ε
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Input discrimination
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Conclusions

I Global and local modifications of the synaptic weights signifi-
cantly affect the attractor complexity of the networks.

I The values of the interactive connections also play a significant
role in the maintenance and robustness of an optimal level of
attractor-based complexity.

I We have an attractor-based learning procedure which modfiies
the interactive weight in order to reach a targeted discriminabil-
ity degree of a certain input stream.

I These considerations support the rationale that synaptic plas-
ticity might be crucially involved in the computational capabil-
ities of neural networks.
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