
Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Computational Capabilities of

Recurrent Neural Networks

Based on their Attractor Dynamics

Jérémie Cabessa

Joint work with Alessandro E.P. Villa

Department of Mathematical Economics

University of Paris 2

France

14 July 2015

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Introduction

I We consider that some aspect of information processing in the

brain can be approached from the perspective of computability

theory.

I The computational capabilities of recurrent neural networks

(RNN) have mainly been studied in the context of classical

computation (McCulloch & Pitts, Turing, Kleene, von Neu-

mann, Minsky, Papert,..., Siegelmann & Sontag,...).

I Here, we provide a theoretical characterization of the compu-

tational power of recurrent neural networks, in terms of their

attractor dynamics (infinite input stream computation).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Introduction

I We consider that some aspect of information processing in the

brain can be approached from the perspective of computability

theory.

I The computational capabilities of recurrent neural networks

(RNN) have mainly been studied in the context of classical

computation (McCulloch & Pitts, Turing, Kleene, von Neu-

mann, Minsky, Papert,..., Siegelmann & Sontag,...).

I Here, we provide a theoretical characterization of the compu-

tational power of recurrent neural networks, in terms of their

attractor dynamics (infinite input stream computation).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Introduction

I We consider that some aspect of information processing in the

brain can be approached from the perspective of computability

theory.

I The computational capabilities of recurrent neural networks

(RNN) have mainly been studied in the context of classical

computation (McCulloch & Pitts, Turing, Kleene, von Neu-

mann, Minsky, Papert,..., Siegelmann & Sontag,...).

I Here, we provide a theoretical characterization of the compu-

tational power of recurrent neural networks, in terms of their

attractor dynamics (infinite input stream computation).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write

head, and a finite program.

1 0

Finite
Program
state qin

Tape 1 10 0

input u

I input u is accepted by M if M(u) reaches the state qacc

I input u is rejected by M if M(u) reaches the state qrej

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write

head, and a finite program.

0 0

Finite
Program
state q7

Tape 1 10 0

I input u is accepted by M if M(u) reaches the state qacc

I input u is rejected by M if M(u) reaches the state qrej

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write

head, and a finite program.

0 1

Finite
Program
state q13

Tape 1 10 0

I input u is accepted by M if M(u) reaches the state qacc

I input u is rejected by M if M(u) reaches the state qrej

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write

head, and a finite program.

0 1

Finite
Program
state q8

Tape 1 10 0

I input u is accepted by M if M(u) reaches the state qacc

I input u is rejected by M if M(u) reaches the state qrej

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write

head, and a finite program.

0 1

Finite
Program
state q8

Tape 1 10 0

I input u is accepted by M if M(u) reaches the state qacc

I input u is rejected by M if M(u) reaches the state qrej

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine with advice

A Turing machine with advice (TM/A) is a TM provided with an

additional advice tape and advice function α : N −→ {0, 1}∗.

Finite
Program
state qadv

Tape

Advice
Tape

0 1 10 01

input u

advice �(|u|)

I P/poly is the class of languages recognized in polynomial time

by Turing machines with polynomial advices (TM/poly(A)).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine with advice

A Turing machine with advice (TM/A) is a TM provided with an

additional advice tape and advice function α : N −→ {0, 1}∗.

Finite
Program
state qadv

Tape

Advice
Tape

0 1 10 01

input u

10 11 1 110 00 0

advice �(|u|)

I P/poly is the class of languages recognized in polynomial time

by Turing machines with polynomial advices (TM/poly(A)).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Turing machine with advice

A Turing machine with advice (TM/A) is a TM provided with an

additional advice tape and advice function α : N −→ {0, 1}∗.

Finite
Program
state qadv

Tape

Advice
Tape

0 1 10 01

input u

10 11 1 110 00 0

advice �(|u|)

I P/poly is the class of languages recognized in polynomial time

by Turing machines with polynomial advices (TM/poly(A)).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural network

0.8

-0.27

0.5

1.77

-0.6

2.33

-0.44

0.5-1

1

-1

+1

0.64 0.9 0.3

+1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – dynamics

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t+ 1) = σ

(
N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci

)

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – dynamics

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t+ 1) = σ

(
N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)

)

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – models
We consider six models of RNNs:

1. static rational-weighted RNNs

2. static real-weighted (or analog) RNNs

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – models
We consider six models of RNNs:

1. static rational-weighted RNNs

2. static real-weighted (or analog) RNNs

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – models
We consider six models of RNNs:

1. static rational-weighted RNNs

2. static real-weighted (or analog) RNNs

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – models
We consider six models of RNNs:

1. static rational-weighted RNNs

2. static real-weighted (or analog) RNNs

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – models
We consider six models of RNNs:

1. static rational-weighted RNNs

2. static real-weighted (or analog) RNNs

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – models
We consider six models of RNNs:

1. static rational-weighted RNNs

2. static real-weighted (or analog) RNNs

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Recurrent neural networks – models
We consider six models of RNNs:

1. static rational-weighted RNNs

2. static real-weighted (or analog) RNNs

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Results – classical computation

Static Bi-valued Evolving Evolving

Turing super-Turing super-Turing

Q P P/poly P/poly

Sieg. & Sont. 95 Cab. & Sieg. 11,14 Cab. & Sieg. 11,14

super-Turing super-Turing super-Turing

R P/poly P/poly P/poly

Sieg. & Sont. 94 Cab. & Sieg. 11,14 Cab. & Sieg. 11,14

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Muller Turing machines

A Muller Turing machine is a Turing machine working over infinite

input streams (reactive systems, non-terminating processes).

Finite
Program

state q

work tape

input tape 0 1 10 01 1 0 1 0 0 0 1 0 1 1

read only
head

Muller table T = {T1, . . . , Tk}

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Muller Turing machines

A Muller Turing machine is a Turing machine working over infinite

input streams (reactive systems, non-terminating processes).

Finite
Program

state q

work tape

input tape 0 1 10 01 1 0 1 0 0 0 1 0 1 1

read only
head

Muller table T = {T1, . . . , Tk}

I When processing an infinite input stream w, the machine nec-

essarily visits some states infinitely often {qi1 , . . . , qin}.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Muller Turing machines

A Muller Turing machine is a Turing machine working over infinite

input streams (reactive systems, non-terminating processes).

Finite
Program

state q

work tape

input tape 0 1 10 01 1 0 1 0 0 0 1 0 1 1

read only
head

Muller table T = {T1, . . . , Tk}

I The infinite input stream w is accepted byM if {qi1 , . . . , qin} ∈
T . It is rejected by M otherwise.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Muller Turing machines

A Muller Turing machine is a Turing machine working over infinite

input streams (reactive systems, non-terminating processes).

Finite
Program

state q

work tape

input tape 0 1 10 01 1 0 1 0 0 0 1 0 1 1

read only
head

Muller table T = {T1, . . . , Tk}

I The set of all input streams that are accepted by M is the

ω-language recognized by M.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

⌃0
1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

⌃0
1 ⇧0

1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

⌃0
1

⌃0
2

⇧0
1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

⌃0
1

⌃0
2 ⇧0

2

⇧0
1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

⌃0
1

⌃0
2

⌃0
3

⇧0
2

⇧0
1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

⌃0
1

⌃0
2

⌃0
3 ⇧0

3

⇧0
2

⇧0
1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity
Let {0, 1}ω be equipped with the product topology of the discrete

topology. The Borel hierarchy of {0, 1}ω is as follows:

height !1

⌃0
1

⌃0
2

⌃0
3 ⇧0

3

⇧0
2

⇧0
1

BC(⇧0
2)

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Topological complexity

I The set of ω-languages recognizable by Muller Turing machines

(depicted in red) is a countable subset of BC(Π0
2).

height !1

⌃0
1

⌃0
2

⌃0
3 ⇧0

3

⇧0
2

⇧0
1

BC(⇧0
2)

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
We consider RNNs with Boolean input cells, sigmoid and Boolean

internal cells, and working on infinite input streams.

· · · · · ·
Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

Spatio-temporal
pattern

Infinite Boolean
induced stream

Infinite Boolean
input stream

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
We consider RNNs with Boolean input cells, sigmoid and Boolean

internal cells, and working on infinite input streams.

· · · · · ·
Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

Spatio-temporal
pattern

Infinite Boolean
induced stream

Infinite Boolean
input stream

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
We consider RNNs with Boolean input cells, sigmoid and Boolean

internal cells, and working on infinite input streams.

· · · · · ·
Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Spatio-temporal
pattern

Infinite Boolean
induced stream

Infinite Boolean
input stream

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
We consider RNNs with Boolean input cells, sigmoid and Boolean

internal cells, and working on infinite input streams.

· · · · · ·
Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Spatio-temporal
pattern

Infinite Boolean
induced stream

Infinite Boolean
input stream

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
We consider RNNs with Boolean input cells, sigmoid and Boolean

internal cells, and working on infinite input streams.

· · · · · ·
Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Spatio-temporal
pattern

Raster plot
· · ·
· · ·
· · ·

Infinite Boolean
induced stream

Infinite Boolean
input stream

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
We consider RNNs with Boolean input cells, sigmoid and Boolean

internal cells, and working on infinite input streams.

· · · · · ·
Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Spatio-temporal
pattern

Raster plot
· · ·
· · ·
· · ·

Infinite Boolean
induced stream

Infinite Boolean
input stream

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks

· · · · · ·

Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
induced stream

Infinite Boolean
input stream

I The attractors are assumed to be classified into two possible

kinds: meaningful or spurious.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks

· · · · · ·

Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
induced stream

Infinite Boolean
input stream

I An infinite Boolean input stream is accepted by N if the corre-

sponding Boolean internal stream visits a meaningful attractor.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks

· · · · · ·

Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
induced stream

Infinite Boolean
input stream

I An infinite Boolean input stream is rejected by N if the corre-

sponding Boolean internal stream visits a spurious attractor.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks

· · · · · ·

Boolean
input
cells

Boolean
internal

cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
induced stream

Infinite Boolean
input stream

I The set of all input streams that are accepted by N is the

ω-language recognized by N .

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
As before, we consider six models of ω-hybrid RNNs:

1. static rational-weighted RNNs.

2. static real-weighted RNNs.

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
As before, we consider six models of ω-hybrid RNNs:

1. static rational-weighted RNNs.

2. static real-weighted RNNs.

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
As before, we consider six models of ω-hybrid RNNs:

1. static rational-weighted RNNs.

2. static real-weighted RNNs.

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
As before, we consider six models of ω-hybrid RNNs:

1. static rational-weighted RNNs.

2. static real-weighted RNNs.

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
As before, we consider six models of ω-hybrid RNNs:

1. static rational-weighted RNNs.

2. static real-weighted RNNs.

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
As before, we consider six models of ω-hybrid RNNs:

1. static rational-weighted RNNs.

2. static real-weighted RNNs.

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

ω-hybrid recurrent neural networks
As before, we consider six models of ω-hybrid RNNs:

1. static rational-weighted RNNs.

2. static real-weighted RNNs.

3. bi-valued evolving rational-weighted RNNs

4. general evolving rational-weighted RNNs

5. bi-valued evolving real-weighted RNNs

6. general evolving real-weighted RNNs

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static rational ω-hybrid RNNs

Theorem

The static rational-weighted ω-hybrid RNNs are equivalent to

Muller Turing machines; their underlying ω-languages belong to

the class BC(Π0
2).

height !1

⌃0
1

⌃0
2

⌃0
3 ⇧0

3

⇧0
2

⇧0
1

BC(⇧0
2)

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

height !1

⌃0
1

⌃0
2

⌃0
3 ⇧0

3

⇧0
2

⇧0
1

BC(⇧0
2)

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

L(Ev�HRNN [R]s)

L(Ev2�HRNN [Q]s)L(St�HRNN [R]s)

BC(⇧0
2)

BC(⇧0
2)

L(Ev2�HRNN [R]s) L(Ev�HRNN [Q]s)

✓✓

✓ ✓

✓

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

L(Ev�HRNN [R]s)

L(Ev2�HRNN [Q]s)L(St�HRNN [R]s)

BC(⇧0
2)

BC(⇧0
2)

L(Ev2�HRNN [R]s) L(Ev�HRNN [Q]s)

✓

✓✓

✓ ✓

✓

✓

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

L(Ev�HRNN [R]s)

L(Ev2�HRNN [Q]s)L(St�HRNN [R]s)

BC(⇧0
2)

BC(⇧0
2)

L(Ev2�HRNN [R]s) L(Ev�HRNN [Q]s)
✓

✓

✓✓

✓ ✓

✓

✓

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

Proof idea (1):

I Let L = BC
(⋂

i≥0

⋃
j≥0 pi,j · (BM)ω

)
be aBC(Π0

2) ω-language.

I We encode L into some evolving binary sequence wL ∈ {0, 1}ω
or by some real number rL ∈ R.

I We can design an Ev2-HRNN[Q] or an St-HRNN[R] which de-

codes wL or rL and recognize L, respectively.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

Proof idea (1):

I Let L = BC
(⋂

i≥0

⋃
j≥0 pi,j · (BM)ω

)
be aBC(Π0

2) ω-language.

I We encode L into some evolving binary sequence wL ∈ {0, 1}ω
or by some real number rL ∈ R.

I We can design an Ev2-HRNN[Q] or an St-HRNN[R] which de-

codes wL or rL and recognize L, respectively.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

Proof idea (1):

I Let L = BC
(⋂

i≥0

⋃
j≥0 pi,j · (BM)ω

)
be aBC(Π0

2) ω-language.

I We encode L into some evolving binary sequence wL ∈ {0, 1}ω
or by some real number rL ∈ R.

I We can design an Ev2-HRNN[Q] or an St-HRNN[R] which de-

codes wL or rL and recognize L, respectively.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

Proof idea (1):

I Let L = BC
(⋂

i≥0

⋃
j≥0 pi,j · (BM)ω

)
be aBC(Π0

2) ω-language.

I We encode L into some evolving binary sequence wL ∈ {0, 1}ω
or by some real number rL ∈ R.

I We can design an Ev2-HRNN[Q] or an St-HRNN[R] which de-

codes wL or rL and recognize L, respectively.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

Proof idea (2):

I Let L(N) ⊆ (BM)ω be recognized by some Ev-HRNN[R] N .

I We can prove that L(N) is the preimage of BC(Π0
2)-set by

some continuous function, and therefore, L(N) ∈ BC(Π0
2).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

Proof idea (2):

I Let L(N) ⊆ (BM)ω be recognized by some Ev-HRNN[R] N .

I We can prove that L(N) is the preimage of BC(Π0
2)-set by

some continuous function, and therefore, L(N) ∈ BC(Π0
2).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Static analog and evolving ω-hybrid RNNs

Theorem

All models of static real-weighted and evolving ω-hybrid RNNs are

all super-Turing equivalent; they recognize the class of all BC(Π0
2)

ω-languages.

Proof idea (2):

I Let L(N) ⊆ (BM)ω be recognized by some Ev-HRNN[R] N .

I We can prove that L(N) is the preimage of BC(Π0
2)-set by

some continuous function, and therefore, L(N) ∈ BC(Π0
2).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Summary

Static Bi-valued Evolving Evolving

Q
Turing (Muller) super-Turing super-Turing

∈ BC(Π0
2) = BC(Π0

2) = BC(Π0
2)

R
super-Turing super-Turing super-Turing

= BC(Π0
2) = BC(Π0

2) = BC(Π0
2)

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Conclusion

I We provided a characterization of the super-Turing computa-

tional power of recurrent neural networks in terms of their at-

tractor dynamics.

I In general, the super-Turing computational capabilities of neu-

ral models raises the question of hypercomputation.

I Current physical theories are consistent with the possibility of

hypercomputational systems (quantum, relativistic, etc.). No

such systems are currently feasible or harnessable.

I Philosophical and scientific literature about hypercomputation

is however flourishing.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Conclusion

I We provided a characterization of the super-Turing computa-

tional power of recurrent neural networks in terms of their at-

tractor dynamics.

I In general, the super-Turing computational capabilities of neu-

ral models raises the question of hypercomputation.

I Current physical theories are consistent with the possibility of

hypercomputational systems (quantum, relativistic, etc.). No

such systems are currently feasible or harnessable.

I Philosophical and scientific literature about hypercomputation

is however flourishing.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Conclusion

I We provided a characterization of the super-Turing computa-

tional power of recurrent neural networks in terms of their at-

tractor dynamics.

I In general, the super-Turing computational capabilities of neu-

ral models raises the question of hypercomputation.

I Current physical theories are consistent with the possibility of

hypercomputational systems (quantum, relativistic, etc.). No

such systems are currently feasible or harnessable.

I Philosophical and scientific literature about hypercomputation

is however flourishing.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

Introduction Turing machines RNNs ω-Turing machines ω-hybrid RNNs Results Conclusion

Conclusion

I We provided a characterization of the super-Turing computa-

tional power of recurrent neural networks in terms of their at-

tractor dynamics.

I In general, the super-Turing computational capabilities of neu-

ral models raises the question of hypercomputation.

I Current physical theories are consistent with the possibility of

hypercomputational systems (quantum, relativistic, etc.). No

such systems are currently feasible or harnessable.

I Philosophical and scientific literature about hypercomputation

is however flourishing.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa

	Introduction
	Turing machines
	RNNs
	-Turing machines
	-hybrid RNNs
	Results
	Conclusion

