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INTRODUCTION

» We consider that some aspect of information processing in the
brain can be approached from the perspective of computability
theory.
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INTRODUCTION

» We consider that some aspect of information processing in the
brain can be approached from the perspective of computability
theory.

» The computational capabilities of recurrent neural networks
(RNN) have mainly been studied in the context of classical
computation (McCulloch & Pitts, Turing, Kleene, von Neu-
mann, Minsky, Papert,..., Siegelmann & Sontag,...).

» Here, we provide a theoretical characterization of the compu-
tational power of recurrent neural networks, in terms of their
attractor dynamics (infinite input stream computation).
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TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.
input u
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A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.
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TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

Tape foft]v]ofofaf [ | [ F PT I 0]~

Finite
Program
state dg

» input u is accepted by M if M(u) reaches the state qucc
> input u is rejected by M if M(u) reaches the state g,.;
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function a : N — {0, 1}*.

input u

Tape [1JotJofotf J J P TP T I 0TJ-

Finite
Program

K state qaq,

Advice
Tape LI LT TTTTTTTTITTT]-
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A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function a : N — {0, 1}*.

input u
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function a : N — {0, 1}*.

input u

Tape [1]oftJofotf J J P TP T I HTJ-

Finite
Program
state g,
Aone. PO oo Aol T T 117 -
— —
Y

advice a(|u|)

» P/poly is the class of languages recognized in polynomial time
by Turing machines with polynomial advices (TM/poly(A)).
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RECURRENT NEURAL NETWORKS — DYNAMICS

neuron

“ |
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mi(t—i— 1) =0 (Zaij . .rj(t) + szg . U,j(t) + Ci)
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RECURRENT NEURAL NETWORKS — DYNAMICS

neuron eoain(t)

bil(t) /

bu\/}(t) —

zi(t+1) =0 (Z ag () - x5 (t) + > big(t) - uy (1) + Ci(ﬂ)

j=1 j=1
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RECURRENT NEURAL NETWORKS — MODELS

We consider six models of RNNs:
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RECURRENT NEURAL NETWORKS — MODELS

We consider six models of RNNs:
1. static rational-weighted RNNs

@il

@iz
o aN
neuron N
Zi /

! \
bing \

Ci

j=1 j=1

N M
zi(t+1) =0 (Z aij - xi(t) + Z bij - wj(t) +ci>
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RECURRENT NEURAL NETWORKS — MODELS

We consider six models of RNNs:
1. static rational-weighted RNNs
2. static real-weighted (or analog) RNNs
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RECURRENT NEURAL NETWORKS — MODELS

We consider six models of RNNs:
1. static rational-weighted RNNs
2. static real-weighted (or analog) RNNs
3. bi-valued evolving rational-weighted RNNs

(l11(/\al2[[)

neuron soain(t)
T;

0 @
bine (1) \
ei(t)

N M
zi(t+1) =0 (Z ai;(t) (1) + D b (t) - uy(t) + Cz‘(’«))
=1 =1
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RECURRENT NEURAL NETWORKS — MODELS

We consider six models of RNNs:
1. static rational-weighted RNNs
2. static real-weighted (or analog) RNNs
3. bi-valued evolving rational-weighted RNNs
4. general evolving rational-weighted RNNs
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RECURRENT NEURAL NETWORKS — MODELS

We consider six models of RNNs:

1. static rational-weighted RNNs
static real-weighted (or analog) RNNs
bi-valued evolving rational-weighted RNNs
general evolving rational-weighted RNNs
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bi-valued evolving real-weighted RNNs
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RECURRENT NEURAL NETWORKS — MODELS

We consider six models of RNNs:

1. static rational-weighted RNNs
static real-weighted (or analog) RNNs
bi-valued evolving rational-weighted RNNs
general evolving rational-weighted RNNs
bi-valued evolving real-weighted RNNs

A

general evolving real-weighted RNNs
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RESULTS — CLASSICAL COMPUTATION
| STATIC BI-VALUED EVOLVING EvoLviNG
Turing super-Turing super-Turing
Q P P/poly P/poly

Sieg. & Sont. 95

Cab. & Sieg. 11,14

Cab. & Sieg. 11,14

super-Turing
R P/poly
Sieg. & Sont. 94

super-Turing

P /poly
Cab. & Sieg. 11,14

super-Turing
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MULLER TURING MACHINES

A Muller Turing machine is a Turing machine working over infinite
input streams (reactive systems, non-terminating processes).

input tape [1]o]1]oJo|1]1]o]1]o]oJof1]o]1]1] ---
[

[y
.
= read only

head <. _ | Finite
Program

K state g

worktape | [ | | | | [ [ 110 J ]I 07
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MULLER TURING MACHINES

A Muller Turing machine is a Turing machine working over infinite
input streams (reactive systems, non-terminating processes).

input tape [1]o]1]oJo|1]1]o]1]o]oJof1]o]1]1] ---

[y
.

=~ read only

nead ~._ | Finite
Program

‘/ state g

worktape | [ | | | | [ [ 11 0] ] Q0]

Muller table 7 = {11, ..., Ty}

» When processing an infinite input stream w, the machine nec-
essarily visits some states infinitely often {g;,,...,qi, }.
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MULLER TURING MACHINES

A Muller Turing machine is a Turing machine working over infinite
input streams (reactive systems, non-terminating processes).

input tape [1]o]1]oJo|1]1]o]1]o]oJof1]o]1]1] ---

[y
.

= read only

nead  ~._ | Finite
Program

‘/ state q

worktape | [ | | | | [T 110 J ] Q0T 7]-

Muller table T = {11, ..., Ty}

» The infinite input stream w is accepted by M if {qi,, ..., ¢, } €
T. It is rejected by M otherwise.
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MULLER TURING MACHINES

A Muller Turing machine is a Turing machine working over infinite
input streams (reactive systems, non-terminating processes).

input tape [1]o]1]oJo|1]1]o]1]o]oJof1]o]1]1] ---

[y
.

= read only .
nead . _ | Finite
Program

‘/ state q

worktape | [ | | | | [T 110 J ] Q0T 7]-

Muller table T = {11, ..., Ty}

> The set of all input streams that are accepted by M is the
w-language recognized by M.

COMPUTATIONAL CAPABILITIES OF RECURRENT NEURAL NETWORKS JEREMIE CABESSA



INTRODUCTION TURING MACHINES RNNs w-TURING MACHINES w-HYBRID RNNs RESULTS CONCLUSION
o oo 0000 oce 000 00000 o

TOPOLOGICAL COMPLEXITY

Let {0,1}* be equipped with the product topology of the discrete
topology. The Borel hierarchy of {0, 1}“ is as follows:

height wy
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TOPOLOGICAL COMPLEXITY

» The set of w-languages recognizable by Muller Turing machines
(depicted in red) is a countable subset of BC(I19).

height w,
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wW-HYBRID RECURRENT NEURAL NETWORKS

We consider RNNs with Boolean input cells, sigmoid and Boolean
internal cells, and working on infinite input streams.

o

Boolean % Sigmoid Boolean QO
input R internal internal
cells oO— cells cells
(0]

COMPUTATIONAL CAPABILITIES OF RECURRENT NEURAL NETWORKS JEREMIE CABESSA



INTRODUCTION TURING MACHINES RNNs w-TURING MACHINES w-HYBRID RNNs REsULTS CONCLUSION
o oo 0000 oo ®00 00000 o

wW-HYBRID RECURRENT NEURAL NETWORKS

We consider RNNs with Boolean input cells, sigmoid and Boolean
internal cells, and working on infinite input streams.

o

Boolean O— Sigmoid Boolean QO
input : internal internal
cells oO— cells cells
(0]
Infinite Boolean ©0000000000008000O0O0
00000000000 0000060e 8O0

input stream
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wW-HYBRID RECURRENT NEURAL NETWORKS

We consider RNNs with Boolean input cells, sigmoid and Boolean
internal cells, and working on infinite input streams.

o

Boolean O— Sigmoid Boolean QO

input : internal internal

cells oO— cells cells
Infinite Boolean @0 0000 00eeo000e®@00000
input stream 00000000000 00000 e eo
Infinite Boolean o o coeo0eo0 ceeoe
- € boolea 0000000000000 00000e -
induced stream 0000000000000 00 800
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wW-HYBRID RECURRENT NEURAL NETWORKS

We consider RNNs with Boolean input cells, sigmoid and Boolean
internal cells, and working on infinite input streams.

o

Boolean O— Sigmoid Boolean QO
input R internal internal
cells oO— cells cells
Infinite Boolean 00000 000e@e000e®@000O00
input stream 00000000000 00000 e eo
. ) o 0coeo:eo0 ceeoe
I}nﬁnnteBoolean 0000000000000 000080 6 -
induced stream 000000000000 0®©00@O00

—
Attractor (periodic)
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wW-HYBRID RECURRENT NEURAL NETWORKS

We consider RNNs with Boolean input cells, sigmoid and Boolean
internal cells, and working on infinite input streams.

o

Boolean O— Sigmoid Boolean QO
input : internal internal
cells oO— cells cells
Infinite Boolean @0 0000 00eeo000e®@00000
input stream 00000000000 00000 e eo
. eo0o0 0coeo:eo0 eeoce
InﬁnlteBoolean 0000000000000 000006 -
induced stream 000000000000 0®©00@O00
I e [ [
Attractor (periodic)
1 1 1 1 11 11 1
Raster plot L1 1 I T T I
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wW-HYBRID RECURRENT NEURAL NETWORKS

We consider RNNs with Boolean input cells, sigmoid and Boolean
internal cells, and working on infinite input streams.

o

Boolean O— Sigmoid Boolean QO
input : internal internal
cells oO— cells cells

Infinite Boolean @0 0000 00eeo000e®@00000
input stream 00000000000 00000 e eo
. eo0o0 0coeo:eo0 eeoce

InﬁnlteBoolean 0000000000000 000006 -
induced stream 000000000000 0®©00@O00
—t ———f ——

Attractor (periodic)

1 1 1 11 11 1...

Raster plot 11 | I T N I N |

L1 L 1 1
— — —
Spatio-temporal

pattern
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Boolean O—s Sigmoid Boolean
input : internal internal
cells oO—> cells cells

Infinite Boolean @000 0000000000 0000O0
input stream 0C0O®@00@00008000080@eeo0
Infinite Boolean 000000000 0000000086
0C0O@0000000.00000000e

induced stream ©@0@00000©00@0@00000e0o0
1

Attractor (periodic)

» The attractors are assumed to be classified into two possible
kinds: meaningful or spurious.
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wW-HYBRID RECURRENT NEURAL NETWORKS

Boolean O—s Sigmoid Boolean
input : internal internal
cells oO—> cells cells

Infinite Boolean °

0O0O@@00000ee0000@00000
input stream 0O0O@000©0000000000eeo
Infinite Boolean 0©@00000000000000000
0000000000000 000080

induced stream ©@0@00000©00@0@00000e0o0
1

Attractor (periodic)

» An infinite Boolean input stream is accepted by N if the corre-
sponding Boolean internal stream visits a meaningful attractor.
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Boolean O—s Sigmoid Boolean
input : internal internal
cells oO—> cells cells

Infinite Boolean °

0O0O@@00000ee0000@00000
input stream 0O0O@000©0000000000eeo
Infinite Boolean 0©@00000000000000000
0000000000000 000080

induced stream ©@0@00000©00@0@00000e0o0
1

Attractor (periodic)

» An infinite Boolean input stream is rejected by N if the corre-
sponding Boolean internal stream visits a spurious attractor.

COMPUTATIONAL CAPABILITIES OF RECURRENT NEURAL NETWORKS JEREMIE CABESSA



INTRODUCTION TURING MACHINES RNNs w-TURING MACHINES w-HYBRID RNNs RESULTS CONCLUSION
o oo 0000 oo o1 1] 00000 o

wW-HYBRID RECURRENT NEURAL NETWORKS

Boolean O—s Sigmoid Boolean
input : internal internal
cells oO—> cells cells

Infinite Boolean °

0O0O@@00000ee0000@00000
input stream 0O0O@000©0000000000eeo
Infinite Boolean 0©@00000000000000000
0000000000000 000080

induced stream ©@0@00000©00@0@00000e0o0
1

Attractor (periodic)

» The set of all input streams that are accepted by A is the
w-language recognized by N .
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wW-HYBRID RECURRENT NEURAL NETWORKS

As before, we consider six models of w-hybrid RNNs:
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wW-HYBRID RECURRENT NEURAL NETWORKS

As before, we consider six models of w-hybrid RNNs:
1. static rational-weighted RNNs.

@il

ai2
o aN
neuron N
x; /

! \
bin \

Ci

j=1 j=1

N M
zi(t+1) =0 (Z agj - xj(t) + Z bij - wj(t) +ci>

CONCLUSION
o
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As before, we consider six models of w-hybrid RNNs:
1. static rational-weighted RNNs.
2. static real-weighted RNNs.
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As before, we consider six models of w-hybrid RNNs:
1. static rational-weighted RNNs.
2. static real-weighted RNNs.
3. bi-valued evolving rational-weighted RNNs
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As before, we consider six models of w-hybrid RNNs:
1. static rational-weighted RNNs.
2. static real-weighted RNNs.
3. bi-valued evolving rational-weighted RNNs
4. general evolving rational-weighted RNNs
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As before, we consider six models of w-hybrid RNNs:
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As before, we consider six models of w-hybrid RNNs:
1. static rational-weighted RNNs.

static real-weighted RNNs.

bi-valued evolving rational-weighted RNNs

general evolving rational-weighted RNNs

bi-valued evolving real-weighted RNNs
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STATIC RATIONAL w-HYBRID RNNSs
THEOREM

The static rational-weighted w-hybrid RNNs are equivalent to

Muller Turing machines; their underlying w-languages belong to
the class BC(IT3).
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STATIC ANALOG AND EVOLVING w-HYBRID RNNSs
THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(I13)
w-languages.
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THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(I19)
w-languages.
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THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(I19)
w-languages.

PROOF IDEA (1):
» Let L = BC (ﬂiZO UjsoPi - (IB%M)“) be a BC(IT9) w-language.
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THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(I19)
w-languages.

PROOF IDEA (1):
» Let L = BC (ﬂiZO UjsoPi - (IB%M)“) be a BC(IT9) w-language.

» We encode L into some evolving binary sequence wy, € {0,1}*
or by some real number ry € R.
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STATIC ANALOG AND EVOLVING w-HYBRID RNNSs

THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(I19)
w-languages.

PROOF IDEA (1):
» Let L = BC (ﬂiZO UjsoPi - (IB%M)“> be a BC(IT9) w-language.
» We encode L into some evolving binary sequence wy, € {0,1}*
or by some real number ry € R.

» We can design an Evo-HRNN[Q] or an St-HRNN[R] which de-
codes wy, or rz, and recognize L, respectively.
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THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(IT9)
w-languages.
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STATIC ANALOG AND EVOLVING w-HYBRID RNNSs

THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(IT9)
w-languages.

PROOF IDEA (2):
» Let L(N) C (BM)“ be recognized by some Ev-HRNN[R] .
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STATIC ANALOG AND EVOLVING w-HYBRID RNNSs

THEOREM

All models of static real-weighted and evolving w-hybrid RNNs are
all super-Turing equivalent; they recognize the class of all BC(IT9)
w-languages.

PROOF IDEA (2):
» Let L(N) C (BM)“ be recognized by some Ev-HRNN[R] .

» We can prove that L(N\) is the preimage of BC(II9)-set by
some continuous function, and therefore, L(N') € BO(II9).
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SUMMARY
STATIC BI-vALUED EVOLVING  EVOLVING
0 Turing (Muller) super-Turing super-Turing
€ BC(I19) = BCO(I19) = BC(I19)
R super-Turing super-Turing super-Turing
= BC(I13) = BC(IL3) = BC(I13)
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CONCLUSION

» We provided a characterization of the super-Turing computa-
tional power of recurrent neural networks in terms of their at-
tractor dynamics.
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» We provided a characterization of the super-Turing computa-
tional power of recurrent neural networks in terms of their at-
tractor dynamics.

> In general, the super-Turing computational capabilities of neu-
ral models raises the question of hypercomputation.

» Current physical theories are consistent with the possibility of
hypercomputational systems (quantum, relativistic, etc.). No
such systems are currently feasible or harnessable.
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CONCLUSION

» We provided a characterization of the super-Turing computa-
tional power of recurrent neural networks in terms of their at-
tractor dynamics.

> In general, the super-Turing computational capabilities of neu-
ral models raises the question of hypercomputation.

» Current physical theories are consistent with the possibility of
hypercomputational systems (quantum, relativistic, etc.). No
such systems are currently feasible or harnessable.

» Philosophical and scientific literature about hypercomputation
is however flourishing.
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