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» This work fits in the context of Interactive Epistemology.

» Interactive Epistemology deals with the modelling of interac-
tive knowledge and belief of multiple agents.
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INTERACTIVE EPISTEMOLOGY

» This work fits in the context of Interactive Epistemology.

» Interactive Epistemology deals with the modelling of interac-
tive knowledge and belief of multiple agents.

» Interactive Epistemology is a rather young discipline founded
by Aumann (1976) and first been applied to games by Au-
mann (1987), and Tan and Werlang (1988).

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LiMIT KNOWLEDGE LK AND GAMES AUMANN’S THM wiTH LK CONCLUSION
oe 00000000 000000000000000 0000000000000 0000 00000000 o

ErPISTEMIC GAME THEORY

» Epistemic Game Theory complements game theory with the
consideration of:

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOWLEDGI LK AND GAMES AUMANN’S THM wiTH LK CONCLUSION
oe 00000000 000000000000000 0000000000000 0000 00000000 o

ErPISTEMIC GAME THEORY

» Epistemic Game Theory complements game theory with the
consideration of:

» an epistemic model allowing to capture the interactive knowl-
edge and belief of multiple agents;

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOWLEDGI LK AND GAMES AUMANN’S THM wiTH LK CONCLUSION
oe 00000000 000000000000000 0000000000000 0000 00000000 o

ErPISTEMIC GAME THEORY

» Epistemic Game Theory complements game theory with the
consideration of:

» an epistemic model allowing to capture the interactive knowl-
edge and belief of multiple agents;

» choice functions allowing to connect the interactive epistemol-
ogy to the game.

LimiT KNOWLEDGE JEREMIE CABESSA



STRUCTURES

INTRODUCTION

I'um wiTH LK CONCLUSION
oe o

ErPISTEMIC GAME THEORY

» Epistemic Game Theory complements game theory with the
consideration of:

» an epistemic model allowing to capture the interactive knowl-
edge and belief of multiple agents;

» choice functions allowing to connect the interactive epistemol-
ogy to the game.

» Objectives of game theory:

LimiT KNOWLEDGE JEREMIE CABESSA



STRUCTURES L I'um wiTH LK CONCLUSION

INTRODUCTION A
oe

ErPISTEMIC GAME THEORY

» Epistemic Game Theory complements game theory with the
consideration of:

» an epistemic model allowing to capture the interactive knowl-
edge and belief of multiple agents;

» choice functions allowing to connect the interactive epistemol-
ogy to the game.

» Objectives of game theory:

> epistemic foundations for existing solution concepts
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» Epistemic Game Theory complements game theory with the
consideration of:

» an epistemic model allowing to capture the interactive knowl-
edge and belief of multiple agents;

» choice functions allowing to connect the interactive epistemol-
ogy to the game.

» Objectives of game theory:

> epistemic foundations for existing solution concepts

» discovery of new solution concepts by considering new epis-
temic hypotheses

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES |

HM WITH LK CONCLUSION
©0000000 o

AUMANN STRUCTURES

We consider the so-called set-based approach to interactive
epistemology as introduced by Aumann (1976).
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We consider the so-called set-based approach to interactive
epistemology as introduced by Aumann (1976).

DEFINITION 1 (AUMANN STRUCTURE)

An Aumann structure is a tuple A = (Q, (Z;)ier, p), where:
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AUMANN STRUCTURES

We consider the so-called set-based approach to interactive
epistemology as introduced by Aumann (1976).

DEFINITION 1 (AUMANN STRUCTURE)

An Aumann structure is a tuple A = (Q, (Z;)ier, p), where:
» () is a set of possible worlds;
» [ is a set of agents;

» each Z; is a partition of €2 representing the information of
agent ¢;
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AUMANN STRUCTURES

We consider the so-called set-based approach to interactive
epistemology as introduced by Aumann (1976).

DEFINITION 1 (AUMANN STRUCTURE)

An Aumann structure is a tuple A = (Q, (Z;)ier, p), where:

» () is a set of possible worlds;

v

I is a set of agents;

v

each Z; is a partition of () representing the information of
agent ¢;

v

p : Q — [0,1] is a prior probability function such that
Yweap(w) = 1.
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EVENTS

In this framework, an event E is defined as a set of possible worlds
of €.

The event "“it is raining in London” consists of the set of all
possible worlds where it does actually rain in London.
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The event “Agent i knows E" is defined as

Intuitively, agent ¢ knows E iff in all worlds he considers possible,
E holds.
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MuTUuAL KNOWLEDGE

The mutual knowledge of E amongst the set I of agents is
naturally defined by

K(E) = Nier K:(E)
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MuTUuAL KNOWLEDGE

The mutual knowledge of E amongst the set I of agents is
naturally defined by

K(E) = Nier K:(E)

The sequence of higher-order mutual knowledge of E is defined as
K°E)=F and K™"Y(E) = K(K™(E)) for all m > 0.
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COMMON KNOWLEDGE
Common knowledge off E is defined as

CK(E)= ()| K™(E).
meN

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOWLEDGE LK AND GAMES AUMANN’S THM wiTH LK CONCLUSION
e} 00000@00 000000000000000 0000000000000 0000 00000000 o

CoMMON KNOWLEDGE

Common knowledge off E is defined as

CK(E)= ()| K™(E).
meN

On has the following properties:

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOWLEDGE LK AND GAMES AUMANN’S THM wiTH LK CONCLUSION
e} 00000@00 000000000000000 0000000000000 0000 00000000 o

CoMMON KNOWLEDGE

Common knowledge off E is defined as

CK(E)= ()| K™(E).
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On has the following properties:

» K™HY(E) C K™(E), for all m > 0.
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Common knowledge off E is defined as

CK(E)= ()| K™(E).
meN

On has the following properties:

» K™HY(E) C K™(E), for all m > 0.

» CK(E)CE.
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CoMMON KNOWLEDGE

Common knowledge off E is defined as

CK(E)= ()| K™(E).
meN

On has the following properties:
» K™HY(E) C K™(E), for all m > 0.
» CK(F)CE.

» CK(E) C K™(E), for all m > 0.
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BELIEFS

The prior belief function p : Q — [0, 1] can naturally be extended
to a common prior belief measure on the event space (also denoted
p) p:P(Q) — [0,1] defined by
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BELIEFS

The prior belief function p : Q — [0, 1] can naturally be extended
to a common prior belief measure on the event space (also denoted
p) p:P(Q) — [0,1] defined by

p(E) = Xpepp(w), for any E C P(Q).
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The prior belief function p : Q — [0, 1] can naturally be extended
to a common prior belief measure on the event space (also denoted
p) p:P(Q) — [0,1] defined by

p(E) = Xpepp(w), for any E C P(Q).

Moreover, all agents are assumed to be Bayesian. Hence, the
posterior belief of agent ¢ in event E at world w is given by
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BELIEFS

The prior belief function p : Q — [0, 1] can naturally be extended
to a common prior belief measure on the event space (also denoted
p) p:P(Q) — [0,1] defined by

p(E) = Xpepp(w), for any E C P(Q).

Moreover, all agents are assumed to be Bayesian. Hence, the
posterior belief of agent ¢ in event E at world w is given by

(o — PENTw)
pBITw) = PO
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a general framework providing some formal notion of closeness
between events.

LimiT KNOWLEDGE JEREMIE CABESSA



LimiT KNOWLEDGE
@00000000000000

LiMiT KNOWLEDGE

The standard set-based approach to interactive epistemology lacks
a general framework providing some formal notion of closeness
between events.

An amended topological dimension introduces a perception of
closeness between events permitting agents to reason deeper about
knowledge and belief of events.
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LiMiT KNOWLEDGE

The standard set-based approach to interactive epistemology lacks
a general framework providing some formal notion of closeness
between events.

An amended topological dimension introduces a perception of
closeness between events permitting agents to reason deeper about
knowledge and belief of events.

In such an enriched epistemic-topological framework, the reasoning
of agents may depend on topological instead of mere epistemic
features of the underlying interactive situation.
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TOPOLOGICAL AUMANN STRUCTURES

In this context, we consider the notion of a topological Aumann

structure.

DEFINITION 2 (TOPOLOGICAL AUMANN STRUCTURE)

A topological Aumann structure is a tuple A = (Q,(Z;)icr,p, T),
where:
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where:
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DEFINITION 2 (TOPOLOGICAL AUMANN STRUCTURE)

A topological Aumann structure is a tuple A = (Q,(Z;)icr,p, T),
where:
> (Q,(Z;)ier, p) is a standard Aumann structure;

» T is a topology on the event space P(2), i.e. T is a collec-
tion of subsets of P(2) such that,
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TOPOLOGICAL AUMANN STRUCTURES

In this context, we consider the notion of a topological Aumann

structure.

DEFINITION 2 (TOPOLOGICAL AUMANN STRUCTURE)

A topological Aumann structure is a tuple A = (Q,(Z;)icr,p, T),
where:
> (Q,(Z;)ier, p) is a standard Aumann structure;

» T is a topology on the event space P(2), i.e. T is a collec-
tion of subsets of P(2) such that,

> () and P(2) belong to T;
» 7T is closed under arbitrary union;
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TOPOLOGICAL AUMANN STRUCTURES

In this context, we consider the notion of a topological Aumann

structure.

DEFINITION 2 (TOPOLOGICAL AUMANN STRUCTURE)

A topological Aumann structure is a tuple A = (Q,(Z;)icr,p, T),
where:
> (Q,(Z;)ier, p) is a standard Aumann structure;
» T is a topology on the event space P(2), i.e. T is a collec-
tion of subsets of P(2) such that,

> () and P(2) belong to T;
» 7T is closed under arbitrary union;
» T is closed under finite intersection.
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We now consider the following epistemic-topological operator /imit
knowledge.
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We now consider the following epistemic-topological operator /imit
knowledge.

DEFINITION 3 (LiMIiT KNOWLEDGE)

Let A be a topological Aumann structure, and E be some event.
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We now consider the following epistemic-topological operator /imit
knowledge.

DEFINITION 3 (LiMIiT KNOWLEDGE)

Let A be a topological Aumann structure, and E be some event. If
the (topological) limit point of the sequence of iterated mutual
knowledge claims (K™ (E))m>0 is unique, then
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LiMiT KNOWLEDGE

We now consider the following epistemic-topological operator /imit
knowledge.

DEFINITION 3 (LiMIiT KNOWLEDGE)

Let A be a topological Aumann structure, and E be some event. If
the (topological) limit point of the sequence of iterated mutual
knowledge claims (K™ (E))m>0 is unique, then

LK(E):= lim K™(E)

m— 00

is the event that E is limit knowledge among the set I of agents.
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» Limit knowledge of an event E is constituted by — whenever
unique — the limit point of the sequence of iterated mutual
knowledge, and thus linked to both epistemic as well as topo-
logical aspects of the event space.
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LiMiT KNOWLEDGE

» Limit knowledge of an event E is constituted by — whenever
unique — the limit point of the sequence of iterated mutual
knowledge, and thus linked to both epistemic as well as topo-
logical aspects of the event space.

> Limit knowledge can be understood as the event which is ap-
proached by the sequence of iterated mutual knowledge, ac-
cording to some notion of closeness between events furnished
by a topology on the event space.
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LiMiT KNOWLEDGE

> Note that limit knowledge should not be amalgamated with
common knowledge. Indeed, while common knowledge bears
a standard implicative relation (in terms of set inclusion) to
highest iterated mutual knowledge, limit knowledge entertains
an implicative relation in terms of set proximity with highest
iterated mutual knowledge.
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The concept of limit knowledge clearly differs from that of
common knowledge, but...
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but...

LEMMA 4

Let A= (2, (Z;)icr,p,T) be a topological Aumann structure and
E be an event.
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but...

LEMMA 4

Let A= (2, (Z;)icr,p,T) be a topological Aumann structure and
E be an event. If the sequence (K'(E));>o of iterated mutual
knowledge claims of E is eventually constant, then CK (E) is a
limit point of it.
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but...

LEMMA 4

Let A= (2, (Z;)icr,p,T) be a topological Aumann structure and
E be an event. If the sequence (K'(E));>o of iterated mutual
knowledge claims of E is eventually constant, then CK (E) is a
limit point of it.

In particular, if (K'(E));>o is eventually constant and has a unique
limit point, namely LK (E), then CK(E) = LK(E).
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Illustration of Lemma 4...
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Illustration of Lemma 4...

E
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Illustration of Lemma 4...

K(E)
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Illustration of Lemma 4...

E
K(E)
K2(E)
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Illustration of Lemma 4...

E

K™(E) = K"*(E) = K"*2(E) = --- = CK(E)
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Illustration of Lemma 4...

E

> CK(E)=LK(E)

K"(E) = K"*(E) = K"*2(E) = --- = CK(E)
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Proof of Lemma 4:
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 4: Suppose that (K*(E));>0 is constant from
index p onwards.
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Proof of Lemma 4: Suppose that (K*(E));>0 is constant from
index p onwards. Then CK(E) := (5 K(E) = KP(E).
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 4: Suppose that (K*(E));>0 is constant from
index p onwards. Then CK(E) := (5 K‘(E) = KP(E). Let N
be a T-open neighbourhood of CK(E).
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 4: Suppose that (K*(E));>0 is constant from
index p onwards. Then CK(E) := ;50 K'(E) = KP(E). Let N
be a T-open neighbourhood of C’K(E_) Then, for all i > p, one
has K(F) = KP(E) = CK(E) € N.
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Proof of Lemma 4: Suppose that (K*(E));>0 is constant from
index p onwards. Then CK(E) := ;50 K'(E) = KP(E). Let N
be a T-open neighbourhood of C’K(E_) Then, for all i > p, one
has K(E) = KP(E) = CK(E) € N. Hence, CK(E) is a limit
point of (K*(E))i>o.
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 4: Suppose that (K*(E));>0 is constant from
index p onwards. Then CK(E) := ;50 K'(E) = KP(E). Let N
be a T-open neighbourhood of C’K(E_) Then, for all i > p, one
has K(E) = KP(E) = CK(E) € N. Hence, CK(E) is a limit
point of (K*(E))i>o.

In particular, if the sequence (K%(E));>o has a unique limit point,
namely LK (FE) by definition, then CK(E) = LK (E). O
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COROLLARY 5

Let A= (Q,(Z;)icr,p, T) be a finite topological Aumann structure
and E be an event.
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COROLLARY 5

Let A= (Q,(Z;)icr,p, T) be a finite topological Aumann structure
and E be an event. Then CK(E) is a limit point of (K*(E));>o.
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COROLLARY 5

Let A= (Q,(Z;)icr,p, T) be a finite topological Aumann structure
and E be an event. Then CK(E) is a limit point of (K*(E));>o.
In particular, if (K*(E));>o has a unique limit point, namely
LK(E), then CK(E) = LK (E).
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Proof of Corollary 5:
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Proof of Corollary 5: Suppose that A is finite, i.e. that Q is finite.
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Proof of Corollary 5: Suppose that A is finite, i.e. that  is finite.
Then P(Q) is also finite.
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Proof of Corollary 5: Suppose that A is finite, i.e. that  is finite.
Then P(Q) is also finite. Hence, the sequence (K*(E));>0 is
eventually constant.
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Proof of Corollary 5: Suppose that A is finite, i.e. that  is finite.
Then P(Q) is also finite. Hence, the sequence (K*(E));>0 is
eventually constant. By Lemma 4, CK(E) is a limit point of

(K'(E))izo.
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Corollary 5: Suppose that A is finite, i.e. that  is finite.
Then P(Q) is also finite. Hence, the sequence (K*(E));>0 is
eventually constant. By Lemma 4, CK(E) is a limit point of

(K'(E))iz0-
In particular, if the sequence (K%(E));>o has a unique limit point,
namely LK (E) by definition, then CK(E) = LK (FE). O
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LEMMA 6

Let A= (2, (Z;)icr,p,T) be a topological Aumann structure,
where T is the discrete topology, and let E be an event.
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LEMMA 6

Let A= (2, (Z;)icr,p,T) be a topological Aumann structure,
where T is the discrete topology, and let E be an event. If LK (E)
is well-defined (i.e. (K'(E))i>o has a unique limit point), then
LK(E) = CK(E).
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Proof of Lemma 6:
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Proof of Lemma 6: Suppose that LK (E) is well-defined, i.e., is
the unique limit point of (K*(E));>0.
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Proof of Lemma 6: Suppose that LK (E) is well-defined, i.e., is
the unique limit point of (K*(E));>0. Hence, for any
neighbourhood N of LK (FE), there exists an index py such that
all elements of the sequence belong to N from index py onwards.
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 6: Suppose that LK (E) is well-defined, i.e., is
the unique limit point of (K*(E));>0. Hence, for any
neighbourhood N of LK (FE), there exists an index py such that
all elements of the sequence belong to N from index py onwards.
By definition of the discrete topology 7T, every subset of P(€2) is

open.
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 6: Suppose that LK (E) is well-defined, i.e., is
the unique limit point of (K*(E));>0. Hence, for any
neighbourhood N of LK (FE), there exists an index py such that
all elements of the sequence belong to N from index py onwards.
By definition of the discrete topology 7T, every subset of P(€2) is
open. In particular, the singleton N = {LK(F)} is an open
neighbourhood of LK (E).
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 6: Suppose that LK (E) is well-defined, i.e., is
the unique limit point of (K*(E));>0. Hence, for any
neighbourhood N of LK (FE), there exists an index py such that
all elements of the sequence belong to N from index py onwards.
By definition of the discrete topology 7T, every subset of P(€2) is
open. In particular, the singleton N = {LK(F)} is an open
neighbourhood of LK (E). Hence, there exists py such that
KY(E) € N forall i > py.
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 6: Suppose that LK (E) is well-defined, i.e., is
the unique limit point of (K*(E));>0. Hence, for any
neighbourhood N of LK (FE), there exists an index py such that
all elements of the sequence belong to N from index py onwards.
By definition of the discrete topology 7T, every subset of P(€2) is
open. In particular, the singleton N = {LK(F)} is an open
neighbourhood of LK (E). Hence, there exists py such that
KY(E) € N for all i > py. This means K*(E) = LK(E) for all
12> DN

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOWLEDGE LK AND GAMES AUMANN’S THM WITH LK CONCLI

LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

Proof of Lemma 6: Suppose that LK (E) is well-defined, i.e., is
the unique limit point of (K*(E));>0. Hence, for any
neighbourhood N of LK (FE), there exists an index py such that
all elements of the sequence belong to N from index py onwards.
By definition of the discrete topology 7T, every subset of P(€2) is
open. In particular, the singleton N = {LK(F)} is an open
neighbourhood of LK (E). Hence, there exists py such that
KY(E) € N for all i > py. This means K*(E) = LK(E) for all

i > pn. Therefore CK(FE) :=) KY(E)=LK(E). O

12PN

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOWLEDGE LK AND GAMES AUMANN’S THM wiTH LK CONCLUSION
e} 00000000 00000000000000® 0OOOOO000O0000000 OOOO000O o

LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but...
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but... in order for limit knowledge to be
distinct from common knowledge (hence possibly interesting), the
following conditions need to be satisfied:
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but... in order for limit knowledge to be
distinct from common knowledge (hence possibly interesting), the
following conditions need to be satisfied:

» the underlying topological Aumann structure needs to be infi-
nite (Corollary 5);
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but... in order for limit knowledge to be
distinct from common knowledge (hence possibly interesting), the
following conditions need to be satisfied:

» the underlying topological Aumann structure needs to be infi-
nite (Corollary 5);

» the sequence of iterated mutual knowledge claims needs to be
strictly shrinking (Lemma 4);
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LiMiT KNOWLEDGE VS COMMON KNOWLEDGE

The concept of limit knowledge clearly differs from that of
common knowledge, but... in order for limit knowledge to be
distinct from common knowledge (hence possibly interesting), the
following conditions need to be satisfied:

» the underlying topological Aumann structure needs to be infi-
nite (Corollary 5);

» the sequence of iterated mutual knowledge claims needs to be
strictly shrinking (Lemma 4);

» the underlying topology needs to be more “elaborate” than
the discrete topology (Lemma 6).
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LiMiT KNOWLEDGE AND (GAMES

The operator limit knowledge is capable of providing alternative
epistemic-topological characterizations of solution concepts in
games.
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LiMiT KNOWLEDGE AND (GAMES

The operator limit knowledge is capable of providing alternative
epistemic-topological characterizations of solution concepts in

games.

We give an example of a game and an epistemic-topological model
of it where limit knowledge of rationality is a strict refinement of
common knowledge of rationality in terms of solution concepts.
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LiMiT KNOWLEDGE AND (GAMES

The operator limit knowledge is capable of providing alternative
epistemic-topological characterizations of solution concepts in
games.

We give an example of a game and an epistemic-topological model
of it where limit knowledge of rationality is a strict refinement of
common knowledge of rationality in terms of solution concepts.

We further prove that limit knowledge of rationality is potentially
capable of characterizing any possible event and solution concept.
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GAME

We first recall some basic definitions...
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We first recall some basic definitions...

DEFINITION 7 (GAME)

A game in normal form is a tuple I' = (I, (S;)ier, (u;)icr) where:
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GAME

We first recall some basic definitions...

DEFINITION 7 (GAME)

A game in normal form is a tuple I' = (I, (S;)ier, (u;)icr) where:

» [ is a set of players;
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GAME

We first recall some basic definitions...

DEFINITION 7 (GAME)

A game in normal form is a tuple I' = (I, (S;)ier, (u;)icr) where:

» [ is a set of players;

> each S; is a strategy space for player i;
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GAME

We first recall some basic definitions...

DEFINITION 7 (GAME)

A game in normal form is a tuple I' = (I, (S;)ier, (u;)icr) where:

» [ is a set of players;
> each S; is a strategy space for player i;

» each u; : X;c15; — R a utility function that assigns to each
strategy profile (s;)icr € XicrS; a real number u;((s;)icr) as
payoff.
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DEFINITION 8 (SOLUTION CONCEPT)

A solution concept SC is a mapping associating with each game I’
a subset of its strategy profiles SC'' C x;c1S;.
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SOLUTION CONCEPT

DEFINITION 8 (SOLUTION CONCEPT)

A solution concept SC is a mapping associating with each game I’
a subset of its strategy profiles SC'' C x;c1S;.

Note that a solution concept is a generic method which does not
depend on any particular given game.
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ITERATED STRICT DOMINANCE

DEFINITION 9 (ITERATED STRICT DOMINANCE)

Let I' = (I, (Si)ier, (ui)ier) be a game.
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ITERATED STRICT DOMINANCE

DEFINITION 9 (ITERATED STRICT DOMINANCE)

Let I' = (I, (Si)ier, (ui)icr) be a game. Let the sequence
(SDF)k>o be inductively defined for every player i € Z and k > 0
by

> SD? = SZ
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ITERATED STRICT DOMINANCE

DEFINITION 9 (ITERATED STRICT DOMINANCE)

Let I' = (I, (Si)ier, (ui)icr) be a game. Let the sequence
(SDF)k>o be inductively defined for every player i € Z and k > 0
by
> SD? = S
> SDft! = SDF\
{s; € S’DiﬁC : 3ds) € SDf Vs_; € SD’ji st wi(si,5-) <

u; (85, 8-i) }
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DEFINITION 9 (ITERATED STRICT DOMINANCE)

Let I' = (I, (Si)ier, (ui)icr) be a game. Let the sequence
(SDF)k>o be inductively defined for every player i € Z and k > 0
by
> SD? = S
> SDft! = SDF\
{s; € S’DiﬁC : 3ds) € SDf Vs_; € SD’ji st wi(si,5-) <

u; (85, 8-i) }
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DEFINITION 9 (ITERATED STRICT DOMINANCE)

Let I' = (I, (Si)ier, (ui)icr) be a game. Let the sequence
(SDF)k>o be inductively defined for every player i € Z and k > 0
by
> SD? = S
> SDft! = SDF\
{s; € S’DiﬁC : 3ds) € SDf Vs_; € SD’ji st wi(si,5-) <
ui(sg; s-i)}
Let further SDF = xiezSDl’-“.

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOW )G LK AND GAMES AUMANN’S THM WITH LK CONCLI

ITERATED STRICT DOMINANCE

DEFINITION 9 (ITERATED STRICT DOMINANCE)

Let I' = (I, (Si)ier, (ui)icr) be a game. Let the sequence
(SDE)k>0 be inductively defined for every player i € Z and k > 0
by
> SD? = S
> SDft! = SDF\
{s; € S’DiﬁC : 3ds) € SDf Vs_; € SD’ji st wi(si,5-) <
ui(sg; s-i)}
Let further SDF = xiezSDl’-“. The solution concept iterated strict
dominance is then given by ISD' := ﬂkzo SDF.
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DEFINITION 10 (EPISTEMIC MODEL)

An epistemic model of a game I' is an Aumann structure
AL = (Q, (Ti)ier, (04)icr) that additionally specifies for each player
i € I a choice function o; : 2 — S;, connecting the interactive

epistemology to the game.
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ErPisTEMIC MODEL OF A GAME

DEFINITION 10 (EPISTEMIC MODEL)

An epistemic model of a game I' is an Aumann structure

Al = (Q, (Z.)icr, (0;)icr) that additionally specifies for each player
i € I a choice function o; : 2 — S;, connecting the interactive
epistemology to the game.

The choice function profile o : Q2 — X;c1.5; mapping each world to
its corresponding strategy profile is then defined by

o(w) = (0i(w))ier-
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ErPisTEMIC MODEL OF A GAME

DEFINITION 10 (EPISTEMIC MODEL)

An epistemic model of a game I' is an Aumann structure
AL = (Q, (Ti)ier, (04)icr) that additionally specifies for each player

i € I a choice function o; : 2 — S;, connecting the interactive
epistemology to the game.

The choice function profile o : Q2 — X;c1.5; mapping each world to
its corresponding strategy profile is then defined by

o(w) = (oi(w))ier-

Moreover, it is standard and natural to assume that each player
knows his own strategy choice (measurability assumption), i.e., if
two worlds w and ' are such that Z;(w) = Z;(w'), then

oi(w) = g;(W').

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES LIMIT KNOWLEDGE LK AND GAMES AUMANN’S THM WITH LK CONCLUSION
[e]e} 00000000 000000000000000 0O0O0Oe00000000000 0OO000000 o

KNOWLEDGE-BASED RATIONALITY

We consider the following notion of knowledge-based rationality:

LimiT KNOWLEDGE JEREMIE CABESSA



N’'s THM WITH LK CONCLUSION

KNOWLEDGE-BASED RATIONALITY

We consider the following notion of knowledge-based rationality:

DEFINITION 11 (KNOWLEDGE-BASED RATIONALITY)

Let ' be a game and A" be an epistemic model of it.
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KNOWLEDGE-BASED RATIONALITY

We consider the following notion of knowledge-based rationality:

DEFINITION 11 (KNOWLEDGE-BASED RATIONALITY)

Let ' be a game and A" be an epistemic model of it. The event
player i is rational is defined as

R; := ﬂ (Q\ Ki{w € Q: ui(s4,0-i(w) > ui(o(w))}) .
5;€5;
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KNOWLEDGE-BASED RATIONALITY

We consider the following notion of knowledge-based rationality:

DEFINITION 11 (KNOWLEDGE-BASED RATIONALITY)

Let ' be a game and A" be an epistemic model of it. The event
player i is rational is defined as

R; := ﬂ (Q\ Ki{w € Q: ui(s4,0-i(w) > ui(o(w))}) .
5;€5;

The event that all players are rational is called rationality and
defined as R := [, R:.
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CK(R) iMPLIES [SD

Common knowledge of knowledge-based rationality implies iterated
strict dominance.
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CK(R) IMPLIES [SD

Common knowledge of knowledge-based rationality implies iterated
strict dominance.

PROPOSITION 12

Let T be a game and A" be an epistemic model of it. Then
o(CK(R)) C ISD".
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CK(R) IMPLIES [SD

Common knowledge of knowledge-based rationality implies iterated
strict dominance.

PROPOSITION 12

Let T be a game and A" be an epistemic model of it. Then
o(CK(R)) C ISD".

Proof:
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CK(R) IMPLIES [SD

Common knowledge of knowledge-based rationality implies iterated
strict dominance.

PROPOSITION 12

Let T be a game and A" be an epistemic model of it. Then
o(CK(R)) C ISD".

Proof: By induction, we show that o(K™(R)) C SD™T!, for all
m > 0.
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CK(R) IMPLIES [SD

Common knowledge of knowledge-based rationality implies iterated
strict dominance.

PROPOSITION 12

Let T be a game and A" be an epistemic model of it. Then
o(CK(R)) C ISD".

Proof: By induction, we show that o(K™(R)) C SD™T!, for all
m > 0. It follows that o(CK(R)) = o((,,>0 K™(R)) C
Ninso @(K™(R)) € N0 SD™TH(R) = ISDT. O
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ExXAMPLE OF A COURNOT-TYPE GAME

We provide a game T with an epistemic model of it A" such that:
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ExXAMPLE OF A COURNOT-TYPE GAME

We provide a game T with an epistemic model of it A" such that:

> iterated dominance followed by weak dominance is a strict
refinement of iterated strict dominance, i.e.,

(ISD +WD)' ¢ ISD"
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ExXAMPLE OF A COURNOT-TYPE GAME

We provide a game T with an epistemic model of it A" such that:

> iterated dominance followed by weak dominance is a strict
refinement of iterated strict dominance, i.e.,

(ISD +WD)' ¢ ISD"

» common knowledge of rationality reveals precisely the strate-
gies that survive iterated strict dominance, i.e.,

o(CK(R)) = ISD"
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ExXAMPLE OF A COURNOT-TYPE GAME

We provide a game T with an epistemic model of it A" such that:

> iterated dominance followed by weak dominance is a strict
refinement of iterated strict dominance, i.e.,

(ISD +WD)' ¢ ISD"
» common knowledge of rationality reveals precisely the strate-
gies that survive iterated strict dominance, i.e.,
o(CK(R)) = ISD"
> limit knowledge of rationality reveals precisely the strategies

that survive iterated strict dominance followed by weak domi-
nance, i.e.,

o(LK(R)) = (ISD + WD)
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EXAMPLE OF A COURNOT-TYPE GAME
Consider the Cournot-type game I' = (I, (S;)icr, (wi)icr) where
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ExXAMPLE OF A COURNOT-TYPE GAME

Consider the Cournot-type game I' = (I, (S;)icr, (wi)icr) where
» [ = {Alice, Bob, Claire, Donald}
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ExXAMPLE OF A COURNOT-TYPE GAME

Consider the Cournot-type game I' = (I, (S;)icr, (wi)icr) where
» [ = {Alice, Bob, Claire, Donald}
> SAlice = SBob = [07 1]: SClaire = {U7 D}, SDonald = {L7 R}
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EXAMPLE OF A COURNOT-TYPE GAME
Consider the Cournot-type game I' = (I, (S;)icr, (wi)icr) where
» [ = {Alice, Bob, Claire, Donald}
> Satice = Spob = [0, 1], Sciaire = {U, D}, Sponala = {L, R}
> u; 2 Satice X SBop X Sclaire X SDonatd — R, for all ¢ € I, are:

Watice (v, y,v,w) =a(l =2 —y)  upo(,y,v,w) =y(l -z —y)

Uctaire (2, 4,0, w) and wponata(w, y, v, w) are given by:

Donald Donald
L R L R
7l |, U (23 (2,2
Claire Claire
D | (2,2) | (2.3) D (1,1)  (2,1)
for all (x,y) # (5. %) for (2,y) = (5, 5)
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ExXAMPLE OF A COURNOT-TYPE GAME

The best-response functions of Alice and Bob are given by:

bAlice(yaUau) = 1;21/

(1/3,1/3)
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ExXAMPLE OF A COURNOT-TYPE GAME

The best-response functions of Alice and Bob are given by:

Y

bAlice(yaUau) = %

(1/3,1/3)
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ExXAMPLE OF A COURNOT-TYPE GAME

For this game, one has:

Donald
L R

vy 0

Claire
D | (1,1) | (2,1)

for (:z:,y) = (%7 %)
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EXAMPLE OF A COURNOT-TYPE GAME
For this game, one has:
> ISD" = {3} x {3} x {U,D} x {L, R}

Donald
L R

U (2,3) ‘ (2,2)

Claire
D | (1,1) | (2,1)

for (:z:,y) = (%7 %)
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EXAMPLE OF A COURNOT-TYPE GAME
For this game, one has:
» I1SD" = {1} x {3} x {U,D} x {L, R}
» (ISD+WD)' ={1,1 UL}

Donald
L b
U (23  (2)2
Claire
Dl (11| (ol
5+ \ U
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EXAMPLE OF A COURNOT-TYPE GAME
For this game, one has:
» I1SD" = {1} x {3} x {U,D} x {L, R}
» (ISD+WD)' ={1,1 UL}

Donald
L b
U (23  (2)2
Claire
Dl (11| (ol
5+ \ U
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EXAMPLE OF A COURNOT-TYPE GAME
For this game, one has:
> ISD" = {3} x {3} x {U,D} x {L, R}
» (ISD+WD)' ={1,1 UL}
Hence, (ISD + W D)' provides a strict refined strategy profile set
than that induced by ISD'.

Donald
L b
U (23  (2)2
Claire
Dl (11| (ol
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ExXAMPLE OF A COURNOT-TYPE GAME

We consider the epistemic model A" = (2, (Z;)icr, (0)icr) given
by (c.f. next slide):

» Q= {a’ﬂa’%é‘}u{aivﬂivq/ﬁéi o > 0}
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ExXAMPLE OF A COURNOT-TYPE GAME

We consider the epistemic model A" = (2, (Z;)icr, (0)icr) given
by (c.f. next slide):

» Q= {04,6,'7,5} U {ai76i77ia5i ) > O}
» 7 = {Alice, Bob, Claire, Donald}
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ExXAMPLE OF A COURNOT-TYPE GAME

We consider the epistemic model A" = (2, (Z;)icr, (0)icr) given
by (c.f. next slide):

» Q= {OZ?B:’%(S} U {ai76i77ia5i ) > O}
» 7 = {Alice, Bob, Claire, Donald}

> (Z;)ier are as described in next slide...
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ExXAMPLE OF A COURNOT-TYPE GAME

We consider the epistemic model A" = (2, (Z;)icr, (0)icr) given
by (c.f. next slide):

» Q= {04757776} U {ai76i77ia5i 11> O}
» 7 = {Alice, Bob, Claire, Donald}
> (Z;)ier are as described in next slide...

> 0 = (0 Alice> O Bobs OClaire, O Donald) : §} = Xier is given by:

O'(Oé) = (1/37 1/37 U? L) O'(Oén) = (sgllce’ 8%01)7 U’ L)
o(B)=(1/3,1/3,U,R)  0(Bn) = (8%icer oy Us R)
O—(F)/) = (1/3? 1/37D>L) O—(fyn) = (82110678%017’D’L)
0(6) =(1/3,1/3,D,R)  0(6n) = (8%jice> Shop» D+ R)-
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ExXAMPLE OF A COURNOT-TYPE GAME

Aumann structure
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EXAMPLE OF A COURNOT-TYPE GAME

Aumann structure = — Alice

« [e%s} aq [e% as Qy as €73 [e%d
B Bo B1 Ba Bs B Bs Be Br

v 0 i1 72 73 Va4 Vs 76 7

5 do 01 P 03 04 [ 6 07

o <& = E z 9ac
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ExXAMPLE OF A COURNOT-TYPE GAME

Aumann structure — Bob
e} Qg [e%] e} as Qyq as Qg
B Bo B B2 B3 Ba Bs Be
v Y0 " 72 73 Va Vs G
4 do 01 O 03 04 05 06
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ExXAMPLE OF A COURNOT-TYPE GAME

Aumann structure

Qo
Bo
v Y0
5 Jo
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Aumann structure
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s e [ (5] () (8 5] (&) (=)
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EXAMPLE OF A COURNOT-TYPE GAME

Aumann structure = — Alice — Bob — Claire — Donald

=} = = E £ DA
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EXAMPLE OF A COURNOT-TYPE GAME

AUMANN’s THM wiTH LK CONCLUSION
o
Aumann structure  — Alice

— Bob — Claire —— Donald

Strategies

Yy

for Alice and Bob:
coordinates of the red points...
b Atice .
for Claire: U or D

for Donald: L or R
/3

173
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EXAMPLE OF A COURNOT-TYPE GAME

Aumann structure = — Alice — Bob — Claire — Donald

Strategies
I for Alice and Bob: (
1 coordinates of the red points... (
b Atice for Claire: U or D (
or aire: or (
for Donald: L or R
a(an) = (Shyices Shops Uy L)
1/3 (Bn) = (5hiicer SBow: Us R)
() = (Shticer SBons D L)
0(0n) = (Shtices Shop: D: R)

173 1
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ExXAMPLE OF A COURNOT-TYPE GAME

For this game, one has R = Q \ {ao, 50,70, 00}, hence
CK(R) ={«,B,v,0}.
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ExXAMPLE OF A COURNOT-TYPE GAME

For this game, one has R = Q \ {ao, 50,70, 00}, hence
CK(R) = {a, B,7,6}.

Moreover, suppose P(£2) equipped with the topology

T={0CPQ):{a} €0} U{P)}
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ExXAMPLE OF A COURNOT-TYPE GAME

For this game, one has R = Q \ {ao, 50,70, 00}, hence
CK(R) = {a, B,7,6}.

Moreover, suppose P(£2) equipped with the topology
T={0cP(Q):{a} ¢ O} U{P(Q)}

It follows that LK (R) = lim,—00 (K™ (R))m>0 = {a}.
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ExXAMPLE OF A COURNOT-TYPE GAME

For this game, one has R = Q \ {ao, 50,70, 00}, hence
CK(R) = {a, B,7,6}.

Moreover, suppose P(£2) equipped with the topology
T={0CcP():{a} £ O}U{PQ)}
It follows that LK (R) = lim;, 0o (K™ (R))m>0 = {a}. Hence,

o(CK(R)) = {o(a),a(B),0(v),0(d)}
{1/3} x {1/3} x {U, D} x {L,R} = ISD"
o(LK(R)) = {o(a)}=1{(1/3,1/3,U,L)} = (ISD + WD)'.
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ExXAMPLE OF A COURNOT-TYPE GAME

For this game, one has R = Q \ {ao, 50,70, 00}, hence
CK(R) = {a, B,7,6}.

Moreover, suppose P(£2) equipped with the topology
T={0CcP():{a} £ O}U{PQ)}
It follows that LK (R) = lim;, 0o (K™ (R))m>0 = {a}. Hence,

o(CK(R)) = {o(a),a(B),0(v),0(d)}
{1/3} x {1/3} x {U, D} x {L,R} = ISD"
o(LK(R)) = {o(a)}=1{(1/3,1/3,U,L)} = (ISD + WD)'.

Therefore, the solution in accordance with LK (R) is a strict
refinement of the solution induced by CK (R). &
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Moreover, limit knowledge of rationality is potentially capable of
characterizing any possible event and solution concept.
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LiMiT KNOWLEDGE AND (GAMES

Moreover, limit knowledge of rationality is potentially capable of
characterizing any possible event and solution concept.

THEOREM 13

Let T’ be a normal form game and A" an epistemic model of it
such that (K™ (R))m>o is strictly shrinking (where R is the event
“rationality” ).
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LiMiT KNOWLEDGE AND (GAMES

Moreover, limit knowledge of rationality is potentially capable of
characterizing any possible event and solution concept.

THEOREM 13
Let T’ be a normal form game and A" an epistemic model of it
such that (K™ (R))m>o is strictly shrinking (where R is the event
“rationality” ).
1. Let E be any event. Then, there exists a topology on P(f2)
such that LK(R) = E.
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LiMiT KNOWLEDGE AND (GAMES

Moreover, limit knowledge of rationality is potentially capable of
characterizing any possible event and solution concept.

THEOREM 13

Let T be a normal form game and A" an epistemic model of it

such that (K™ (R))m>o is strictly shrinking (where R is the event
“rationality” ).

1. Let E be any event. Then, there exists a topology on P(f2)
such that LK(R) = E.

2. Let SC be any solution concept. Then, there exists a topol-
ogy on P(R) such that o(LK(R)) C SC'.
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Proof of Theorem 13.
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LiMiT KNOWLEDGE AND (GAMES

Proof of Theorem 13. (Point 2.) Let FF = ¢~ (SC").
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LiMiT KNOWLEDGE AND (GAMES

Proof of Theorem 13. (Point 2.) Let F' = ¢~ (SC"). Then
o(F) c Sct.
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LiMiT KNOWLEDGE AND (GAMES

Proof of Theorem 13. (Point 2.) Let F = ¢~ *(SC). Then
o(F) C SC'. Suppose the event space P(Q) equipped with the
excluded-point topology

T={0OCPEQ):F¢gOu{PQ)}
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Proof of Theorem 13. (Point 2.) Let F = ¢~ *(SC). Then
o(F) C SC'. Suppose the event space P(Q) equipped with the
excluded-point topology

T={0OCPEQ):F¢gOu{PQ)}

The only T-open neighbourhood of F'is P(£2), and thus the
sequence (K™ (R))m>0 converges to F.
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LiMiT KNOWLEDGE AND (GAMES

Proof of Theorem 13. (Point 2.) Let F = ¢~ *(SC). Then

o(F) C SC'. Suppose the event space P(Q) equipped with the
excluded-point topology

T={0OCPEQ):F¢gOu{PQ)}

The only T-open neighbourhood of F'is P(£2), and thus the
sequence (K™ (R))m>0 converges to F'. Moreover, F'is the only
limit point (for any other event F”, the sequence (K™ (R))m>0 will
never remain in the the T-open neighbourhood {F’} of F from
some index onwards).
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LiMiT KNOWLEDGE AND (GAMES

Proof of Theorem 13. (Point 2.) Let F = ¢~ *(SC). Then

o(F) C SC'. Suppose the event space P(Q) equipped with the
excluded-point topology

T={0OCPEQ):F¢gOu{PQ)}

The only T-open neighbourhood of F'is P(£2), and thus the
sequence (K™ (R))m>0 converges to F'. Moreover, F'is the only
limit point (for any other event F”, the sequence (K™ (R))m>0 will
never remain in the the T-open neighbourhood {F’} of F from
some index onwards). Hence LK (R) = F.
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Proof of Theorem 13. (Point 2.) Let F = ¢~ *(SC). Then

o(F) C SC'. Suppose the event space P(Q) equipped with the
excluded-point topology

T={0OCPEQ):F¢gOu{PQ)}

The only T-open neighbourhood of F'is P(£2), and thus the
sequence (K™ (R))m>0 converges to F'. Moreover, F'is the only
limit point (for any other event F”, the sequence (K™ (R))m>0 will
never remain in the the 7-open neighbourhood {F’} of F from
some index onwards). Hence LK (R) = F'. Therefore

o(LK(R)) = o(F) C SC'.
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Proof of Theorem 13. (Point 2.) Let F = ¢~ *(SC). Then
o(F) C SC'. Suppose the event space P(Q) equipped with the
excluded-point topology

T={0OCPEQ):F¢gOu{PQ)}

The only T-open neighbourhood of F'is P(£2), and thus the
sequence (K™ (R))m>0 converges to F'. Moreover, F'is the only
limit point (for any other event F”, the sequence (K™ (R))m>0 will
never remain in the the 7-open neighbourhood {F’} of F from
some index onwards). Hence LK (R) = F'. Therefore

o(LK(R)) = o(F) C SC'.

(Point 1.) Similar proof with F' replaced by E in the topology. [
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Towards the issue of plausible topological considerations, we can
for instance consider the following topologies:
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Towards the issue of plausible topological considerations, we can
for instance consider the following topologies:

» Partition topology (on the state space): reflects informational
indistinguishability between possible worlds in terms of sepa-
ration properties.
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Towards the issue of plausible topological considerations, we can
for instance consider the following topologies:

» Partition topology (on the state space): reflects informational
indistinguishability between possible worlds in terms of sepa-
ration properties.

» Common truism topology (on the state space): reflects high-
indistinguishability between possible worlds in terms of sepa-
ration properties.
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Towards the issue of plausible topological considerations, we can
for instance consider the following topologies:

» Partition topology (on the state space): reflects informational
indistinguishability between possible worlds in terms of sepa-
ration properties.

» Common truism topology (on the state space): reflects high-
indistinguishability between possible worlds in terms of sepa-
ration properties.

» SD*-topology (event space): provides an epistemic-topological
foundation for the solution concept “k-times strict domi-
nance" (SDF).
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AGREEING TO DISAGREE WITH LIMIT KNWOLEDGE

Limit Knowldege enables to revisit Aumann’s famous “no agreeing
to disagree theorem” from an epistemic-topological perspective.
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AGREEING TO DISAGREE WITH LIMIT KNWOLEDGE

Limit Knowldege enables to revisit Aumann’s famous “no agreeing
to disagree theorem” from an epistemic-topological perspective.

More precisely, if the original hypotheses of Aumann’s theorem are
modified in that the epistemic operator common knowledge is
replaced by the epistemic-topological operator limit knowledge,
then agents can indeed agree to disagree.
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AUMANN’S THEOREM

Aumann’s agreement theorem states that if two agents entertain a
common prior belief function and their posterior beliefs in some
event are common knowledge, then these posterior beliefs must
coincide.
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AUMANN’S THEOREM

Aumann’s agreement theorem states that if two agents entertain a
common prior belief function and their posterior beliefs in some
event are common knowledge, then these posterior beliefs must
coincide.

In other words, if two agents with common prior beliefs hold
distinct posterior beliefs, then these posteriors cannot be common
knowledge among them.
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AUMANN’S THEOREM

Aumann’s agreement theorem states that if two agents entertain a
common prior belief function and their posterior beliefs in some
event are common knowledge, then these posterior beliefs must
coincide.

In other words, if two agents with common prior beliefs hold
distinct posterior beliefs, then these posteriors cannot be common
knowledge among them.

Intuitively, it is impossible for agents to consent to distinct beliefs.
Thus, agents cannot agree to disagree.
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AUMANN’S THEOREM

Aumann’s Theorem can be formalised as follows:
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AUMANN’S THEOREM

Aumann’s Theorem can be formalised as follows:

THEOREM 14 (AUMANN (1976))

Let A be an Aumann structure, E C Q) be an event and & € () be
a world such that

K(({' € Q:p(B | L) = p(B | T@))}) # 0.

i=1
then p(E | T1 (@) = p(E | To(@)) = - - - = p(E | T (@)).

LimiT KNOWLEDGE JEREMIE CABESSA



INTRODUCTION AUMANN STRUCTURES L ml G LK AND GAMES AUMANN’s THM wiTH LK ConcL

00000000  0000C 0000000000 0000000000000 0000 OOe00000

AUMANN’S THEOREM

Aumann’s Theorem can be formalised as follows:

THEOREM 14 (AUMANN (1976))

Let A be an Aumann structure, E C Q) be an event and & € () be
a world such that

K(({' € Q:p(B | L) = p(B | T@))}) # 0.

i=1
then p(E | T1 (@) = p(E | To(@)) = - - - = p(E | T (@)).
Moreover, if

we CK(({o' € Q:p(E| L)) =p(E | Ti(@))})
=1

then p(E | T1(w)) = p(E | To()) = -+ = p(E | Tn(w)).
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Taiee(@) | @ !

\ Tpul@) /

By ={w' € Q: p(E | Zatice(w)) = p(E | Zatice(@))}
Ey={w € Q: p(E | Ioop(w')) = p(E | Tpop(@))}
E' =E,NE}

If CK(E'") is non-empty, then the posteriors beliefs in E of Alice
and Bob at @ cannot differ. In fact, the posteriors of Alice and
Bob also coincide at w.

LimiT KNOWLEDGE JEREMIE CABESSA



AUMANN’S THM wiTH LK
00000000

AUMANN’S THEOREM

» Along the lines of Aumann's theorem, Milgrom and Stokey
(1982) establish an impossibility theorem of speculative trade.
Intuitively, their result states that if two traders agree on a
prior efficient allocation of goods, then upon receiving pri-
vate information it cannot be common knowledge that both
traders have an incentive to trade.
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AUMANN’S THEOREM

» Along the lines of Aumann's theorem, Milgrom and Stokey
(1982) establish an impossibility theorem of speculative trade.
Intuitively, their result states that if two traders agree on a
prior efficient allocation of goods, then upon receiving pri-
vate information it cannot be common knowledge that both
traders have an incentive to trade.

» From an empirical or quasi-empirical point of view the agree-
ment theorem seems quite startling since real world agents do
frequently disagree on a large variety of issues.
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AUMANN’S THEOREM

» Along the lines of Aumann's theorem, Milgrom and Stokey
(1982) establish an impossibility theorem of speculative trade.
Intuitively, their result states that if two traders agree on a
prior efficient allocation of goods, then upon receiving pri-
vate information it cannot be common knowledge that both
traders have an incentive to trade.

» From an empirical or quasi-empirical point of view the agree-
ment theorem seems quite startling since real world agents do
frequently disagree on a large variety of issues.

» It is then natural to scrutinize whether Aumann’s basic result
still holds with weakened or slightly modified assumptions.
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AGREEING TO DISAGREE WITH LK

We revisited Aumann’s theorem from the “limit knowledge”
perspective, and proved that it is possible for agent to “limit-agree
to disagree”.
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AGREEING TO DISAGREE WITH LK

We revisited Aumann’s theorem from the “limit knowledge”

perspective, and proved that it is possible for agent to “limit-agree
to disagree”.

More precisely, if the original hypotheses of Aumann’s result are
modified in that the epistemic operator common knowledge is
replaced by the epistemic-topological operator limit knowledge,
then agents can indeed agree to disagree.
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AGREEING TO DISAGREE WITH LK

THEOREM 15 (BACH AND CABESSA (2011))

There exist an Aumann structure A equipped with a topology T
on the event space P(f2), an event E C (2, and worlds w,& €

such that

we LK(({o' € Q:p(E | T(w")) = p(E | T(@))})
el

as well as p(E | Z;(w)) # p(E | Z;(w)) for some agents i,j € I.
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AGREEING TO DISAGREE WITH LK

THEOREM 15 (BACH AND CABESSA (2011))

There exist an Aumann structure A equipped with a topology T
on the event space P(f2), an event E C (2, and worlds w,& €
such that

we LK(([{«' € 2:p(E| Li(w)) = p(B | Ti(@))})
i€l

as well as p(E | Z;(w)) # p(E | Z;(w)) for some agents i,j € I.

In other words, agents limit-agree on their posteriors in E at w,
and these posteriors are nevertheless distinct.
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure

Wo w1 w2 w3 Wy Ws We wr ws

prior probabilities p

1 L L _L
16 32 64 128 256

o0l

1 1
2 1

o
=
ol

topology 7 = {O C P(Q) : {{w1,w2} € O}} U{P(Q)}
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure  — Atice

| w2 w3 | | Wy Ws | | We wr wsg

prior probabilities p
1 1

2 4

=
(S
-
Y]
&
w0
&
&
o
2
o

1
16 32

o0l

topology 7 = {O C P(Q) : {{w1,w2} € O}} U{P(Q)}
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure = — Alice — Bob

el o] (o] o] [l =]

prior probabilities p
1 1

2 4

=
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&

w0
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&
o
2
o

1
16 32

o0l

topology 7 = {O C P(Q) : {{w1,w2} € O}} U{P(Q)}
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure = — Alice — Bob

E

el o] (o] o] [l =]

prior probabilities p
1 1

2 4

=

(S
-

Y]

&

w0

&

&
o
2
o

1
16 32

o0l

topology 7 = {O C P(Q) : {{w1,w2} € O}} U{P(Q)}
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure = — Alice — Bob

E E' =i {w € Q: p(B|Zi(w)) = p(E|Zi(wo))}

| w2 w3 | | Wy Ws | | We wr | wsg

prior probabilities p

1 1
2 1

=
(S
-
Y]
&
w0
&
&
o
2
o

1
16 32

o0l

topology 7 = {O C P(Q) : {{w1,w2} € O}} U{P(Q)}
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure = — Alice — Bob
CK(E")
E E =N {w € Q: p(B|Zi(w)) = p(B|Zi(wo))}
el f] ol o] el o]
prior probabilities p
1 1 1 1 1 1 1 1 B
2 4 8 16 32 64 128 256 512

topology 7 = {O C P(Q) : {{w1,w2} € O}} U{P(Q)}
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure = — Alice — Bob

CK(E")  LK(E)
E B =N fw € Q: p(E|Zi(w)) = p(E|Zi(wo)) }

[l o] (ool o] [l fo]
prior probabilities p
1 1 1 1 1 1 1 1 L
2 1 8 16 32 61 128 256 512

topology 7 = {0 C P(Q) : {{w1, w2} € O}} U{P(Q)}
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AGREEING TO DISAGREE WITH LK
Proof of Theorem 15:

Aumann structure  — Alice — Bob

CK(E') LK(E)
E E' =i {w € Q= p(E|Ti(w)) = p(E|Zi(wo))}

[orfl o] [oo] o] [oof o] s

prior probabilities p
1 1

o0l
—
sl
N
=
(S
—
|-
%@
o
St
>
&
el
©

2 4
topology T = {O C P(Q) : {{w1, w2} € O}} U{P(Q)}
One has, wy € LK(E') as well as p(E|Zajice(w1)) = 1# 3 = p(E|Zpoy(w1)).

Hence, at wy, agents limit-agree on distinct posterior beliefs.
Agents limit-agree to disagree.
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CONCLUSION

» Limit knowledge is a new epistemic-topological operator which
captures reasoning patterns of agents base on closeness of
events.
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CONCLUSION

» Limit knowledge is a new epistemic-topological operator which
captures reasoning patterns of agents base on closeness of
events.

» The operator limit knowledge is capable of providing relevant
epistemic-topological characterizations of solution concepts in
games.
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CONCLUSION

» Limit knowledge is a new epistemic-topological operator which
captures reasoning patterns of agents base on closeness of
events.

» The operator limit knowledge is capable of providing relevant
epistemic-topological characterizations of solution concepts in
games.

» With limit knowledge, a “limit-agreeing to disagree” theorem

is possible.
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CONCLUSION

» Limit knowledge is a new epistemic-topological operator which
captures reasoning patterns of agents base on closeness of
events.

» The operator limit knowledge is capable of providing relevant
epistemic-topological characterizations of solution concepts in
games.

» With limit knowledge, a “limit-agreeing to disagree” theorem
is possible.

» For future work, we envision to pursue the topological ap-
proach to interactive epistemology.
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