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Interactive Epistemology

I This work fits in the context of Interactive Epistemology.

I Interactive Epistemology deals with the modelling of interac-

tive knowledge and belief of multiple agents.

I Interactive Epistemology is a rather young discipline founded

by Aumann (1976) and first been applied to games by Au-

mann (1987), and Tan and Werlang (1988).
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Epistemic Game theory

I Epistemic Game Theory complements game theory with the
consideration of:

I an epistemic model allowing to capture the interactive knowl-

edge and belief of multiple agents;

I choice functions allowing to connect the interactive epistemol-

ogy to the game.

I Objectives of game theory:

I epistemic foundations for existing solution concepts

I discovery of new solution concepts by considering new epis-

temic hypotheses
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Aumann Structures

We consider the so-called set-based approach to interactive

epistemology as introduced by Aumann (1976).

Definition 1 (Aumann Structure)

An Aumann structure is a tuple A = (Ω, (Ii)i∈I , p), where:

I Ω is a set of possible worlds;

I I is a set of agents;

I each Ii is a partition of Ω representing the information of

agent i;

I p : Ω → [0, 1] is a prior probability function such that

Σω∈Ωp(ω) = 1.
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Events

In this framework, an event E is defined as a set of possible worlds

of Ω.

The event “it is raining in London” consists of the set of all

possible worlds where it does actually rain in London.
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Knowledge

The event “Agent i knows E” is defined as

Ki(E) = {ω ∈ Ω : Ii(ω) ⊆ E}

Intuitively, agent i knows E iff in all worlds he considers possible,

E holds.
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Mutual Knowledge

The mutual knowledge of E amongst the set I of agents is

naturally defined by

K(E) =
⋂

i∈I Ki(E)

The sequence of higher-order mutual knowledge of E is defined as

K0(E) = E and Km+1(E) = K(Km(E)) for all m > 0.
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Common Knowledge

Common knowledge off E is defined as

CK(E) =
⋂

m∈N
Km(E).

On has the following properties:

I Km+1(E) ⊆ Km(E), for all m > 0.

I CK(E) ⊆ E.

I CK(E) ⊆ Km(E), for all m > 0.
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Beliefs

The prior belief function p : Ω→ [0, 1] can naturally be extended

to a common prior belief measure on the event space (also denoted

p) p : P(Ω)→ [0, 1] defined by

p(E) = Σω∈Ep(ω), for any E ⊆ P(Ω).

Moreover, all agents are assumed to be Bayesian. Hence, the

posterior belief of agent i in event E at world ω is given by

p(E|Ii(ω)) =
p(E ∩ Ii(ω))

p(Ii(ω))
.
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Limit Knowledge

The standard set-based approach to interactive epistemology lacks

a general framework providing some formal notion of closeness

between events.

An amended topological dimension introduces a perception of

closeness between events permitting agents to reason deeper about

knowledge and belief of events.

In such an enriched epistemic-topological framework, the reasoning

of agents may depend on topological instead of mere epistemic

features of the underlying interactive situation.
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Topological Aumann Structures

In this context, we consider the notion of a topological Aumann

structure.

Definition 2 (Topological Aumann Structure)

A topological Aumann structure is a tuple A = (Ω, (Ii)i∈I , p, T ),

where:

I (Ω, (Ii)i∈I , p) is a standard Aumann structure;

I T is a topology on the event space P(Ω), i.e. T is a collec-
tion of subsets of P(Ω) such that,

I ∅ and P(Ω) belong to T ;
I T is closed under arbitrary union;
I T is closed under finite intersection.
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Topological Aumann Structures

(P(⌦), T )

A = (⌦, (Ii)i2I , p)
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Limit Knowledge

We now consider the following epistemic-topological operator limit

knowledge.

Definition 3 (Limit Knowledge)

Let A be a topological Aumann structure, and E be some event. If

the (topological) limit point of the sequence of iterated mutual

knowledge claims (Km(E))m>0 is unique, then

LK(E) := lim
m→∞

Km(E)

is the event that E is limit knowledge among the set I of agents.
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Limit Knowledge

I Limit knowledge of an event E is constituted by – whenever

unique – the limit point of the sequence of iterated mutual

knowledge, and thus linked to both epistemic as well as topo-

logical aspects of the event space.

I Limit knowledge can be understood as the event which is ap-

proached by the sequence of iterated mutual knowledge, ac-

cording to some notion of closeness between events furnished

by a topology on the event space.
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Limit Knowledge

I Note that limit knowledge should not be amalgamated with

common knowledge. Indeed, while common knowledge bears

a standard implicative relation (in terms of set inclusion) to

highest iterated mutual knowledge, limit knowledge entertains

an implicative relation in terms of set proximity with highest

iterated mutual knowledge.
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Limit Knowledge vs Common Knowledge

The concept of limit knowledge clearly differs from that of

common knowledge, but...

Lemma 4

Let A = (Ω, (Ii)i∈I , p, T ) be a topological Aumann structure and

E be an event. If the sequence (Ki(E))i≥0 of iterated mutual

knowledge claims of E is eventually constant, then CK(E) is a

limit point of it.

In particular, if (Ki(E))i≥0 is eventually constant and has a unique

limit point, namely LK(E), then CK(E) = LK(E).
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Limit Knowledge vs Common Knowledge

Illustration of Lemma 4...

E

Kn(E) = Kn+1(E) = Kn+2(E) = · · · = CK(E)

CK(E) = LK(E)
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Limit Knowledge vs Common Knowledge

Proof of Lemma 4: Suppose that (Ki(E))i≥0 is constant from

index p onwards. Then CK(E) :=
⋂

i≥0K
i(E) = Kp(E). Let N

be a T -open neighbourhood of CK(E). Then, for all i ≥ p, one

has Ki(E) = Kp(E) = CK(E) ∈ N . Hence, CK(E) is a limit

point of (Ki(E))i≥0.

In particular, if the sequence (Ki(E))i≥0 has a unique limit point,

namely LK(E) by definition, then CK(E) = LK(E).
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Limit Knowledge vs Common Knowledge

Corollary 5

Let A = (Ω, (Ii)i∈I , p, T ) be a finite topological Aumann structure

and E be an event. Then CK(E) is a limit point of (Ki(E))i≥0.

In particular, if (Ki(E))i≥0 has a unique limit point, namely

LK(E), then CK(E) = LK(E).
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Limit Knowledge vs Common Knowledge

Proof of Corollary 5: Suppose that A is finite, i.e. that Ω is finite.

Then P(Ω) is also finite. Hence, the sequence (Ki(E))i≥0 is

eventually constant. By Lemma 4, CK(E) is a limit point of

(Ki(E))i≥0.

In particular, if the sequence (Ki(E))i≥0 has a unique limit point,

namely LK(E) by definition, then CK(E) = LK(E).
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Limit Knowledge vs Common Knowledge

Lemma 6

Let A = (Ω, (Ii)i∈I , p, T ) be a topological Aumann structure,

where T is the discrete topology, and let E be an event. If LK(E)

is well-defined (i.e. (Ki(E))i≥0 has a unique limit point), then

LK(E) = CK(E).
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Limit Knowledge vs Common Knowledge

Proof of Lemma 6: Suppose that LK(E) is well-defined, i.e., is

the unique limit point of (Ki(E))i≥0. Hence, for any

neighbourhood N of LK(E), there exists an index pN such that

all elements of the sequence belong to N from index pN onwards.

By definition of the discrete topology T , every subset of P(Ω) is

open. In particular, the singleton N = {LK(E)} is an open

neighbourhood of LK(E). Hence, there exists pN such that

Ki(E) ∈ N for all i ≥ pN . This means Ki(E) = LK(E) for all

i ≥ pN . Therefore CK(E) :=
⋂

i≥pN K
i(E) = LK(E).
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Limit Knowledge vs Common Knowledge

The concept of limit knowledge clearly differs from that of

common knowledge, but... in order for limit knowledge to be

distinct from common knowledge (hence possibly interesting), the

following conditions need to be satisfied:

I the underlying topological Aumann structure needs to be infi-

nite (Corollary 5);

I the sequence of iterated mutual knowledge claims needs to be

strictly shrinking (Lemma 4);

I the underlying topology needs to be more “elaborate” than

the discrete topology (Lemma 6).
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Limit Knowledge and Games

The operator limit knowledge is capable of providing alternative

epistemic-topological characterizations of solution concepts in

games.

We give an example of a game and an epistemic-topological model

of it where limit knowledge of rationality is a strict refinement of

common knowledge of rationality in terms of solution concepts.

We further prove that limit knowledge of rationality is potentially

capable of characterizing any possible event and solution concept.
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Game

We first recall some basic definitions...

Definition 7 (Game)

A game in normal form is a tuple Γ = (I, (Si)i∈I , (ui)i∈I) where:

I I is a set of players;

I each Si is a strategy space for player i;

I each ui : ×i∈ISi → R a utility function that assigns to each

strategy profile (si)i∈I ∈ ×i∈ISi a real number ui((si)i∈I) as

payoff.
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Solution Concept

Definition 8 (Solution Concept)

A solution concept SC is a mapping associating with each game Γ

a subset of its strategy profiles SCΓ ⊆ ×i∈ISi.

Note that a solution concept is a generic method which does not

depend on any particular given game.
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Iterated Strict Dominance

Definition 9 (Iterated Strict Dominance)

Let Γ = (I, (Si)i∈I , (ui)i∈I) be a game. Let the sequence

(SDk
i )k≥0 be inductively defined for every player i ∈ I and k ≥ 0

by

I SD0
i := Si

I SDk+1
i := SDk

i \
{si ∈ SDk

i : ∃s′i ∈ SDk
i ∀s−i ∈ SDk

−i s.t. ui(si, s−i) <

ui(s
′
i, s−i)}

Let further SDk = ×i∈ISD
k
i . The solution concept iterated strict

dominance is then given by ISDΓ :=
⋂

k≥0 SD
k.
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Epistemic Model of a Game

Definition 10 (Epistemic Model)

An epistemic model of a game Γ is an Aumann structure

AΓ = (Ω, (Ii)i∈I , (σi)i∈I) that additionally specifies for each player

i ∈ I a choice function σi : Ω→ Si, connecting the interactive

epistemology to the game.

The choice function profile σ : Ω→ ×i∈ISi mapping each world to

its corresponding strategy profile is then defined by

σ(ω) = (σi(ω))i∈I .

Moreover, it is standard and natural to assume that each player

knows his own strategy choice (measurability assumption), i.e., if

two worlds ω and ω′ are such that Ii(ω) = Ii(ω′), then

σi(ω) = σi(ω
′).
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Knowledge-Based Rationality

We consider the following notion of knowledge-based rationality:

Definition 11 (Knowledge-Based Rationality)

Let Γ be a game and AΓ be an epistemic model of it. The event

player i is rational is defined as

Ri :=
⋂

si∈Si

(Ω \Ki{ω ∈ Ω : ui(si, σ−i(ω) > ui(σ(ω))}) .

The event that all players are rational is called rationality and

defined as R :=
⋂

i∈I Ri.
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CK(R) implies ISD

Common knowledge of knowledge-based rationality implies iterated

strict dominance.

Proposition 12

Let Γ be a game and AΓ be an epistemic model of it. Then

σ(CK(R)) ⊆ ISDΓ.

Proof: By induction, we show that σ(Km(R)) ⊆ SDm+1, for all

m ≥ 0. It follows that σ(CK(R)) = σ(
⋂

m≥0K
m(R)) ⊆⋂

m≥0 σ(Km(R)) ⊆ ⋂
m≥0 SD

m+1(R) = ISDΓ.
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Example of a Cournot-type game

We provide a game Γ with an epistemic model of it AΓ such that:

I iterated dominance followed by weak dominance is a strict

refinement of iterated strict dominance, i.e.,

(ISD +WD)Γ ( ISDΓ

I common knowledge of rationality reveals precisely the strate-

gies that survive iterated strict dominance, i.e.,

σ(CK(R)) = ISDΓ

I limit knowledge of rationality reveals precisely the strategies

that survive iterated strict dominance followed by weak domi-

nance, i.e.,

σ(LK(R)) = (ISD +WD)Γ
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Example of a Cournot-type game
Consider the Cournot-type game Γ = (I, (Si)i∈I , (ui)i∈I) where

I I = {Alice,Bob, Claire,Donald}
I SAlice = SBob = [0, 1], SClaire = {U,D}, SDonald = {L,R}
I ui : SAlice × SBob × SClaire × SDonald → R, for all i ∈ I, are:

uAlice(x, y, v, w) = x(1 � x � y) uBob(x, y, v, w) = y(1 � x � y)

uClaire(x, y, v, w) and uDonald(x, y, v, w) are given by:
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Example of a Cournot-type game
The best-response functions of Alice and Bob are given by:

1

10

bAlice(y, v, u) = 1�y
2

bBob(x, v, u) = 1�x
2

(1/3,1/3)
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Example of a Cournot-type game
For this game, one has:

I ISDΓ = {1
3} × {1

3} × {U,D} × {L,R}
I (ISD +WD)Γ = {1

3 ,
1
3 , U, L}

Hence, (ISD +WD)Γ provides a strict refined strategy profile set

than that induced by ISDΓ.
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Example of a Cournot-type game

We consider the epistemic model AΓ = (Ω, (Ii)i∈I , (σi)i∈I) given

by (c.f. next slide):

I Ω = {α, β, γ, δ} ∪ {αi, βi, γi, δi : i ≥ 0}
I I = {Alice,Bob, Claire,Donald}
I (Ii)i∈I are as described in next slide...

I σ = (σAlice, σBob, σClaire, σDonald) : Ω→ ×i∈I is given by:

σ(α) = (1/3, 1/3, U, L) σ(αn) = (snAlice, s
n
Bob, U, L)

σ(β) = (1/3, 1/3, U,R) σ(βn) = (snAlice, s
n
Bob, U,R)

σ(γ) = (1/3, 1/3, D, L) σ(γn) = (snAlice, s
n
Bob, D, L)

σ(δ) = (1/3, 1/3, D,R) σ(δn) = (snAlice, s
n
Bob, D,R).

Limit Knowledge Jérémie Cabessa
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Example of a Cournot-type game

�

�

�0

�0

�1

�1

�3

�3

�4

�4

�5

�5

�6

�6

�7

�7

�2

�2

�

↵ ↵0

�0

↵1

�1

↵2

�2

↵3

�3

↵4

�4

↵5

�5

↵6

�6 �7

↵7 · · ·

· · ·

· · ·

· · ·

Aumann structure

Strategies

1

10 1/3

1/3

for Claire: U or D

for Donald: L or R

for Alice and Bob:
coordinates of the red points...
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Example of a Cournot-type game
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Aumann structure Alice

Strategies

1

10 1/3

1/3

for Claire: U or D

for Donald: L or R

for Alice and Bob:
coordinates of the red points...
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Example of a Cournot-type game
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Aumann structure Bob
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coordinates of the red points...
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Example of a Cournot-type game
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Aumann structure Claire

Strategies

1

for Claire: U or D

for Donald: L or R

for Alice and Bob:
coordinates of the red points...
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Example of a Cournot-type game
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Aumann structure Donald

Strategies

1
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for Claire: U or D

for Donald: L or R

for Alice and Bob:
coordinates of the red points...
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Example of a Cournot-type game
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Example of a Cournot-type game

�

�

�0

�0

�1

�1

�3

�3

�4

�4

�5

�5

�6

�6

�7

�7

�2

�2

�

↵ ↵0

�0

↵1

�1

↵2

�2

↵3

�3

↵4

�4

↵5

�5

↵6

�6 �7

↵7 · · ·

· · ·

· · ·

· · ·

Aumann structure Alice Bob Claire Donald

Strategies

1

10 1/3
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for Claire: U or D

for Donald: L or R

for Alice and Bob:
coordinates of the red points...

�(↵) = (1/3, 1/3, U, L)
�(�) = (1/3, 1/3, U, R)
�(�) = (1/3, 1/3, D, L)
�(�) = (1/3, 1/3, D, R)

�(↵n) = (sn
Alice, s

n
Bob, U, L)

�(�n) = (sn
Alice, s

n
Bob, U, R)

�(�n) = (sn
Alice, s

n
Bob, D, L)

�(�n) = (sn
Alice, s

n
Bob, D, R)

Choice function
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Example of a Cournot-type game

For this game, one has R = Ω \ {α0, β0, γ0, δ0}, hence

CK(R) = {α, β, γ, δ}.
Moreover, suppose P(Ω) equipped with the topology

T = {O ⊆ P(Ω) : {α} 6∈ O} ∪ {P(Ω)}

It follows that LK(R) = limm→∞(Km(R))m>0 = {α}. Hence,

σ(CK(R)) = {σ(α), σ(β), σ(γ), σ(δ)}
= {1/3} × {1/3} × {U,D} × {L,R} = ISDΓ

σ(LK(R)) = {σ(α)} = {(1/3, 1/3, U, L)} = (ISD +WD)Γ.

Therefore, the solution in accordance with LK(R) is a strict

refinement of the solution induced by CK(R). ♣
Limit Knowledge Jérémie Cabessa
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Limit Knowledge and Games

Moreover, limit knowledge of rationality is potentially capable of

characterizing any possible event and solution concept.

Theorem 13

Let Γ be a normal form game and AΓ an epistemic model of it

such that (Km(R))m>0 is strictly shrinking (where R is the event

“rationality”).

1. Let E be any event. Then, there exists a topology on P(Ω)

such that LK(R) = E.

2. Let SC be any solution concept. Then, there exists a topol-

ogy on P(Ω) such that σ(LK(R)) ⊆ SCΓ.
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Limit Knowledge and Games

Proof of Theorem 13. (Point 2.) Let F = σ−1(SCΓ). Then

σ(F ) ⊆ SCΓ. Suppose the event space P(Ω) equipped with the

excluded-point topology

T = {O ⊆ P(Ω) : F 6∈ O} ∪ {P(Ω)}.

The only T -open neighbourhood of F is P(Ω), and thus the

sequence (Km(R))m>0 converges to F . Moreover, F is the only

limit point (for any other event F ′, the sequence (Km(R))m>0 will

never remain in the the T -open neighbourhood {F ′} of F from

some index onwards). Hence LK(R) = F . Therefore

σ(LK(R)) = σ(F ) ⊆ SCΓ.

(Point 1.) Similar proof with F replaced by E in the topology.
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Limit Knowledge and Games

Towards the issue of plausible topological considerations, we can

for instance consider the following topologies:

I Partition topology (on the state space): reflects informational

indistinguishability between possible worlds in terms of sepa-

ration properties.

I Common truism topology (on the state space): reflects high-

indistinguishability between possible worlds in terms of sepa-

ration properties.

I SDk-topology (event space): provides an epistemic-topological

foundation for the solution concept “k-times strict domi-

nance” (SDk).
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Agreeing to disagree with Limit Knwoledge

Limit Knowldege enables to revisit Aumann’s famous “no agreeing

to disagree theorem” from an epistemic-topological perspective.

More precisely, if the original hypotheses of Aumann’s theorem are

modified in that the epistemic operator common knowledge is

replaced by the epistemic-topological operator limit knowledge,

then agents can indeed agree to disagree.
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Aumann’s Theorem

Aumann’s agreement theorem states that if two agents entertain a

common prior belief function and their posterior beliefs in some

event are common knowledge, then these posterior beliefs must

coincide.

In other words, if two agents with common prior beliefs hold

distinct posterior beliefs, then these posteriors cannot be common

knowledge among them.

Intuitively, it is impossible for agents to consent to distinct beliefs.

Thus, agents cannot agree to disagree.
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Aumann’s Theorem

Aumann’s Theorem can be formalised as follows:

Theorem 14 (Aumann (1976))

Let A be an Aumann structure, E ⊆ Ω be an event and ω̂ ∈ Ω be

a world such that

CK(

n⋂

i=1

{ω′ ∈ Ω : p(E | Ii(ω′)) = p(E | Ii(ω̂))}) 6= ∅.

then p(E | I1(ω̂)) = p(E | I2(ω̂)) = · · · = p(E | In(ω̂)).

Moreover, if

ω ∈ CK(
n⋂

i=1

{ω′ ∈ Ω : p(E | Ii(ω′)) = p(E | Ii(ω̂))})

then p(E | I1(ω)) = p(E | I2(ω)) = · · · = p(E | In(ω)).
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Aumann’s Theorem

E0
2 = {!0 2 ⌦ : p(E | IBob(!

0)) = p(E | IBob(!̂))}
E0

1 = {!0 2 ⌦ : p(E | IAlice(!
0)) = p(E | IAlice(!̂))}

E0 = E0
1 \ E0

2

�

E�

IAlice(�̂)

IBob(�̂)

�̂
CK(E�) {

{
E0

2

E0
1

!

If CK(E′) is non-empty, then the posteriors beliefs in E of Alice

and Bob at ω̂ cannot differ. In fact, the posteriors of Alice and

Bob also coincide at ω.
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Aumann’s Theorem

I Along the lines of Aumann’s theorem, Milgrom and Stokey

(1982) establish an impossibility theorem of speculative trade.

Intuitively, their result states that if two traders agree on a

prior efficient allocation of goods, then upon receiving pri-

vate information it cannot be common knowledge that both

traders have an incentive to trade.

I From an empirical or quasi-empirical point of view the agree-

ment theorem seems quite startling since real world agents do

frequently disagree on a large variety of issues.

I It is then natural to scrutinize whether Aumann’s basic result

still holds with weakened or slightly modified assumptions.
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Agreeing to Disagree with LK

We revisited Aumann’s theorem from the “limit knowledge”

perspective, and proved that it is possible for agent to “limit-agree

to disagree”.

More precisely, if the original hypotheses of Aumann’s result are

modified in that the epistemic operator common knowledge is

replaced by the epistemic-topological operator limit knowledge,

then agents can indeed agree to disagree.
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Agreeing to Disagree with LK

Theorem 15 (Bach and Cabessa (2011))

There exist an Aumann structure A equipped with a topology T
on the event space P(Ω), an event E ⊆ Ω, and worlds ω, ω̂ ∈ Ω

such that

ω ∈ LK(
⋂

i∈I
{ω′ ∈ Ω : p(E | Ii(ω′)) = p(E | Ii(ω̂))})

as well as p(E | Ii(ω)) 6= p(E | Ij(ω)) for some agents i, j ∈ I.

In other words, agents limit-agree on their posteriors in E at ω,

and these posteriors are nevertheless distinct.
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Agreeing to Disagree with LK

Proof of Theorem 15:

Aumann structure

One has, w1 2 LK(E)0 as well as p(E|IAlice(w1)) = 1 6= 2
3 = p(E|IBob(w1)).

Hence, at w1, agents limit-agree on distinct posterior beliefs.
Agents limit-agree to disagree.

Limit Knowledge Jérémie Cabessa



Introduction Aumann Structures Limit Knowledge LK and Games Aumann’s Thm with LK Conclusion

Agreeing to Disagree with LK

Proof of Theorem 15:

Aumann structure

w1 w2 w4 w5 w6 w7 · · ·w8w3
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512 · · ·

prior probabilities p
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Conclusion

I Limit knowledge is a new epistemic-topological operator which

captures reasoning patterns of agents base on closeness of

events.

I The operator limit knowledge is capable of providing relevant

epistemic-topological characterizations of solution concepts in

games.

I With limit knowledge, a “limit-agreeing to disagree” theorem

is possible.

I For future work, we envision to pursue the topological ap-

proach to interactive epistemology.
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