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» Boolean Neural Networks (BNNs), although relatively simple,
allow for a complete analysis of their attractor dynamics.

» Local and global variations of the synaptic weights significantly
influence the attractor dynamics of the networks.

» We introduce an input-driven, memory-based adaptive Spike
Timing-Dependent Plasticity (STDP) rule which stabilizes the
attractor dynamics of the network.

» \We illustrate this approach on a simplified Boolean model of
the basal ganglia-thalamocortical network.
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ADAPTIVE STDP RULE

» Fixed STDP rule:
a;;(t): synaptic weight between x; and z; at time ¢

aii(t+1)=aj(t)+ A [asi(t)a:j(t + 1) Ax;(t)x;(t + 1)}
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» Adaptive STDP rule: X is time dependent

aii(t+1) =a;;(t) + A\(t) [xi(t)a;j (t+1) Ax;(t)x;(t+1)
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DyNAMIC MEMORY — INPUT DRIVEN

memory of network N at time ¢ (past time window)
number of attractors of N at time ¢
minimal nb of attractors remembered by N at time ¢

maximal nb of attractors remembered by N at time ¢

= 0
(M, + K if the input trigger pattern
= X is detected at time t

max(M; —1,0) otherwise
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ADAPTIVE STDP RULE: LEARNING RATE

» The learning rate \(t) depends on the current, min and max
number of attractors seen during the last M; time steps.

(nt — 'nmin,t)()\min - Amax)

)\(t) _ >\max + Nmax .t — Mmin,t if M min,t # Nmax,t
Amax otherwise
A
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1. Input trigger patterns influence the network memory.
2. The network memory influence the STDP rule (learning rate).
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Multi-level evolving process:

1.

= W N

|

Input trigger patterns influence the network memory.
The network memory influence the STDP rule (learning rate).
The STDP rule influence the synaptic weights.

The synaptic weights influence the attractor dynamics.

input trigger | network | STDP rule
patterns } [ memory (learning rate)

|

synaptic attractor
{ weights } . { dynamics
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BOOLEAN MODEL OF THE BASAL (GANGLIA-
THALAMOCORTICAL NETWORK

IN input node
SC superior colliculus
GPi/SNr output nuclei of the basal ganglia

formed by the GABAergic projection
neurons of the intermediate part of
the pallidum and of the substantia
nigra pars reticulata

Thalamus thalamus
GPe external part of the pallidum
NRT thalamic reticular nucleus
Str-D1 striatopallidal component

of the striatum
Str-D2 striatonigral component

of the striatum
STN subthalamic nucleus
Cerebral Cortex cerebral cortex
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BOOLEAN MODEL OF THE BASAL (GANGLIA-
THALAMOCORTICAL NETWORK

Source Target (Node #)

Node # (Name) 0 1 2 3 4 5 6 7 8 9
0 (IN) : 1

1 (SC) int; -1

2 (Thalamus) : : : 1 : 1 1 1 1 1
3 (RTN) : : -1

4 (GPi/SNr) S T |

5 (STN) : : : : 2 : 2 : : 2
6 (GPe) : : .l 1) : 12 -1/

7 (Str-D2) : : : : : : -1

8 (Str-D1) : : : : -1/2 : -1/2

9 (CCortex) into 12 12 1/ : 1/2 : /2 1/2

TABLE: Adjancency matrix
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CONCLUSIONS

» The rationale underlying this study is that the attractor dy-
namics of the networks would be significantly related to their
computational complexity.

» \We showed that the attractor dynamics of the BGT network
can be stabilized by means of an adaptive STDP rule.

» The general idea behind the adaptive STDP rule is the combi-
nation of reinforcement learning (input trigger pattern) and
self-organizing (STDP) processes.

» These considerations support the rationale that synaptic plas-
ticity might be crucially involved in the computational capabil-
ities of neural networks.
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