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The Wagner Hierarchy

(hierarchy of ω-rational sets)

Let A and B be two Muller automata,

L(A) ≤W L(B) ⇔def ∃ f continous s.t.

L(A) = f−1
(

L(B)
)

�
2



Studies of the Wagner hierarchy
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We give a natural game theoretical description...
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AUTOMATA THEORY ALGEBRA

automaton

(rational language)
←→ finite semigroup

Büchi automaton

(ω-rational language)
←→

Wilke algebra

finite ω-semigroup
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ω-semigroup S = (S+, Sω) (J.-É. Pin)

• (S+, ·) is a semigroup, Sω is a set

• π : S+
ω −→ Sω an infinite product
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We consider finite ω-semigroups S = (S+, Sω) of the

form:

• S+ is a finite semigroup

• Sω =
{

(s, e) : (s, e) is a linked pair of S+

}
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A reduction relation ≤SG on ω-semigroups

Let S = (S+, Sω) , T = (T+, Tω) be two ω-sg and X ⊆ Sω , Y ⊆ Tω

X ≤SG Y ⇔def X is ”less complicated” than Y

i.e. ∃ ”simple” f s.t. (u ∈ X ⇔ f (u) ∈ Y )

⇔def II has a w.s. in the game SG(X,Y )
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An infinite two-player game SG(X, Y ) on

ω-semigroups

Let S = (S+, Sω) , T = (T+, Tω) be two ω-sg and X ⊆ Sω , Y ⊆ Tω.

(X) I s0 s1 . . .
after ω moves
−→ 〈s0, s1, s2, . . .〉

(Y ) II t0 t1 . . .
after ω moves
−→ 〈t0, t1, t2, . . .〉

II wins

⇔def

πS(s0, s1, . . .) ∈ X ⇔ πT (t0, t1, . . .) ∈ Y
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The SG-hierarchy

The ≤SG induces a hierarchy on ω-subsets
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Proposition

The finite SG-hierarchy is classwise isomorphic to

the Wagner hierarchy.
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Proposition

The finite SG-hierarchy is decidable: given X ⊆ Sω,

we can compute its degree ξX in the SG-hierarchy
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Linked pairs

Let S+ be a semigroup,

(s, e) ∈ S+ × S+ is a linked pair if

1. se = s

2. e is idempotent (i.e. e2 = e)

s is called the prefix

e is called the idempotent
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Linked pair ≡ stable postion in SG-game

Let (s, e) be a linked pair (so se = s and e2 = e),

:
;

<
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Linked pair ≡ stable postion in SG-game

Let (s, e) be a linked pair (so se = s and e2 = e),

=
>

?
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Linked pair ≡ stable postion in SG-game

Let (s, e) be a linked pair (so se = s and e2 = e),

@
A

B
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Linked pair ≡ stable postion in SG-game

Let (s, e) be a linked pair (so se = s and e2 = e),

C
D

E
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Linked pair ≡ stable postion in SG-game

Let (s, e) be a linked pair (so se = s and e2 = e),

F
G

H
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Accessibility relation ≤pr between prefixes of

linked pairs

Let (s, e) and (s′, e′) be two linked pairs,

s ≤pr s′ ⇔def ∃ t ∈ S+ s.t. st = s′

⇔def a player can go from position s

to position s′ in a SG-game
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and also...

s ≡pr s′ ⇔def s ≤pr s′ ≤pr s

s̄ =def {s
′ : s′ ≡pr s}

s̄ ≤pr s̄′ ⇔def ∃ si ∈ s̄ ∃ s′j ∈ s̄′ s.t. si ≤pr s′j
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Lemma

Let S be a finite semigroup, then (Pr(S),≤pr) is a

partial ordering.
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Absorption ordering ≤id between idempotents of a

same prefix

Let e, e′ be any two idempotents,

e ≤id e′ ⇔def ee′ = e′e = e′
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Lemma

Let S be a finite semigroup, then (E(S),≤id) is a

partial ordering.
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Tree-representation of a finite semigroup
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Tree-representation of a finite semigroup
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Tree-representation of a finite semigroup
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Tree-representation of a finite semigroup
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Tree-representation of a finite semigroup
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Example

Let S = ({1, 2, . . . , n}, max), one has
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Coloring of linked pairs with respect to an

ω-subset X

Let S = (S+, Sω) be an ω-semigroup, (s, e) be a linked pair, and

X ⊆ Sω,

e in the petal Es(S+) will be







green if (s, e) ∈ X

red if (s, e) 6∈ X
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Colored tree-representation of an ω-subset X

Let S = (S+, Sω) be an ω-semigroup, and X ⊆ Sω,
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Colored tree-representation of an ω-subset X

Let S = (S+, Sω) be an ω-semigroup, and X ⊆ Sω,

IJ
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Colored tree-representation of an ω-subset X

Let S = (S+, Sω) be an ω-semigroup, and X ⊆ Sω,

KL
KM
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Colored tree-representation of an ω-subset X

Let S = (S+, Sω) be an ω-semigroup, and X ⊆ Sω,

NO
NP
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Colored tree-representation of an ω-subset X

Let S = (S+, Sω) be an ω-semigroup, and X ⊆ Sω,

QR
QS
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Algorithm

The algorithm deciding the SG-degree of X follows

from this colored tree-representation
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Example

Let S = (S+, Sω) with S+ = ({0, 1, 2, 3, 4, 5}, max), and

X =
{

(3, 1), (3, 3)
}

, then do
sg(X) = [−]ω3.
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Example

Let S = (S+, Sω) with S+ = ({0, 1, 2, 3, 4, 5}, max), and

X =
{

(2, 0), (2, 2), (3, 1), (4, 0), (4, 2), (4, 3), (4, 4)
}

, then

do
sg(X) = [+]ω2 · 3.

T
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Y
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T
U

X
T
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Example

Let S = (S+, Sω) with S+ = ({1, 2, 3}, ·) where
· 1 2 3

1 1 2 3

2 2 2 2

3 3 3 3

and X =
{

(1, 1), (2, 1), (3, 2), (3, 3)
}

, then

do
sg(X) = [+](ω1 + ω0) = [+](ω + 1).

[\
]

^ _
` \

]
^ _a\

]
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Concerning the tree-representation of finite

semigroups

•We clarify the organization of the

tree-representation of finite semigroups.

• Some results about the kind of ω-subsets living in

certain finite ω-semigroup follow.
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Lemma

Any two conjugate linked pairs (s, e), (s′, e′) involve

prefixes s, s′ belonging to the same flower
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Lemma

Any two distinct conjugate idempotents cannot

belong to the same chains. In particular, any two

idempotents e, e′ belonging to the conjugate linked

pairs (s, e), (s′, e′) cannot belong to the same chain.

b
bc

d
de

41



Lemma

Any idempotent appearing in a petal always carries

with him the set of its ≤id-predecessors

f

g h

42



Lemma

Any idempotent is also a prefix somewhere
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Lemma

Any two idempotents of a same ≤id-chain cannot

be prefixes of a same flower.
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Corollary

If there exists a ≤id-chain b of length n in some

petal, then:

• there exist at least n + 1 flowers,

• these flowers are connected in a linear way such

that the chain b is ”growing” along the

accessibility relation between flowers.
ij

ki

lj
klkm

mj nj
kn

o
op

ki km
kl
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Remark

However, one has that

• the petals may decrease along the

≤pr-accessibility relation,

• a same flower may have petals of different heights.
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Proposition

There does not exist a family of ω-semigroups

which exclusively characterizes ω-subsets of finite

SG-degrees.
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Proposition

There does not exist a family of ω-semigroups

which exclusively characterizes ω-subsets of

SG-degrees ωn, for all n > 0.
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Proposition

There does exist a family of ω-semigroups which

exclusively characterize ω-subsets of SG-degree

ωn · p, for all n, p > 0.

proof: consider finite ω-semigroups which provide a ”linear”

tree-representation.
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Some Algebraic considerations
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Remark

• (s, e) is a linked pair iff both e is idempotent and

is a right unit of s.

• s ≤pr s′ iff s is a left divisor of s′.

• e ≤id e′ iff e is a divisor of e′.
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Ideals

Lemma

Any cut C =
⋃

i∈I s̄iS of the tree-representation of S

is a right ideal.

Notice that the converse is false...
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Lemma

R is a minimal right ideal iff R is a terminal cut
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Monoids

Proposition

Non-self-dual ω-subsets are exactly the ones living

in finite ω-semigroups built on monoids, i.e.

Let S = (S+, Sω) be a finite ω-semigroup, and X ⊆ Sω, t.f.a.e.:

1. X is non-self-dual

2. ∃ M = (M+, Mω) s.t. M+ is a monoid, and ∃ Y ⊆ Sω s.t.

Y ≡SG X
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Left-cancelable semigroups

Definition

A semigroup S is left-cancelable if ∀ a, b, x ∈ S, one

has xa = xb ⇒ a = b.
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Proposition

Let S = (S+, Sω) built on S+ which is a finite

left-cancelable semigroup, then ∀ X ⊆ Sω,

do
sg(X) = 1.
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Groups

Corollary

Let S = (S+, Sω) built on S+ which is a finite group,

then ∀ X ⊆ Sω, do
sg(X) = 1.

57



Cyclic semigroups

Proposition

Let S = (S+, Sω) built on S+ which is a finite cyclic

semigroup, then ∀ X ⊆ Sω, do
sg(X) = 1.
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Commutative semigroups

Lemma

The petals of a same flower are all identical.
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Lemma

One never has distinct conjugate linked pairs in a

same petal.
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Lemma

The petals are always increasing when going

deeper in the tree-representation.
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Lemma

The terminal flowers are all identical.

Corollary

Every commutative semigroup has a universal

minimal right ideal.
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Characterisic semigroups

Definition

Let S be a semigroup. The characteristic

semigroup of S (Σ(S), ◦) is defined by

1. Σ(S) =def {U ⊆ S : U is a subsemigroup of S}

2. B ◦B′ =def [B ∪B′] =
⋃

n∈ω(B ∪ B′)n
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Remark

Σ(S) is commutative and every element is

idempotent.
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Lemma

Any flower only contains a single petal.
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Lemma

Let (s, e), (s′, e′) be two linked pairs, then

(s, e) =c (s′, e′) ⇔ (s, e) = (s′, e′).

66



Conclusions

• Develop interactions between Algebra and Game

Theory

• Try to find the algebraic correspondence of other

machines, and characterize the hierarchy of their

languages by this method.
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