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Metric spaces
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A metric space is a set of points and a distance
which measures of the degree of closeness of pairs
of points in this space.
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Definition
A metric space is a pair (X , d), where X is a set

and d is a distance on X , i.e. d is a function

d : X × X −→ R such that for all x , y , z ∈ X ,
1 d(x , y) ≥ 0,
2 d(x , y) = 0 if and only if x = y ,
3 d(x , y) = d(y , x),
4 d(x , z) ≤ d(x , y) + d(y , z).
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Example
1 (R, d) is a metric space, where d is defined by

d(a, b) = |b − a|.
2 (Rn, dn) is a metric space, where dn is defined

by d(x , y) =
√

Σn
i=1(xi − yi)2.
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Example

For n = 2, this distance is the classical distance

used in analytical geometry:

y = (y1,y2)

y2 - x2

x = (x1,x2) y1 - x1

sqrt((y1 - x1)2
 + (y2 - x2)2)
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Example

Let A be an alphabet. Then (Aω, d) is a metric

space, with d is defined by d(α, β) = 2−r , where

r = min{n : α(n) 6= β(n)}.
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A function f from a metric space X to another

metric space Y is continuous at the point a if for

any (small) “neighborhood” of f (a), denoted by

V , there is a “neighborhood” of a, denoted by U ,

such that if f (U) ⊆ V .

X Y

f

a

U

V

f(a)

f(U)
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The following function is not continuous at the

point a.

f(a)
V
f(U)

a
U

By choosing such a V , there is no U such that
f (U) ⊂ V .
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Definition
Let (X , d) and (X ′, d ′) be two metric spaces, and

let a ∈ X . A function f : X −→ Y is continuous

at the point a iff for all ε > 0, there exists δ > 0

such that for all x ∈ X , if d(x , a) < δ then

d ′(f (x), f (a)) < ε.

A function f : X −→ Y is continuous iff it is

continuous at each point of X .
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A function f : X −→ Y is continuous at the point
a iff

∀ε ∃δ ∀x(P ⇒ Q).

A function f : X −→ Y is not continuous at the point a
iff

∃ε ∀δ ∃x(P ∧ ¬Q).
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Example
1 Let f : (X , d) −→ (X ′, d ′) be a constant

function, then f is continuous. Take any δ, say

δ = 1.
2 The identity function id : (X , d) −→ (X , d) is

continuous. Take δ = ε.
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Definition
Let (X , d) be a metric space, and let a ∈ X and δ

be given. The open sphere about a of radius δ is

the set

S(a; δ) = {x ∈ X : d(a, x) < δ}.

a
∂

S(a;∂)
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One has by definition

x ∈ S(a; δ) iff d(a, x) < δ.
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Therefore the definition of the continuity

becomes...

Theorem
Let (X , d) and (X ′, d ′) be two metric spaces, and

let a ∈ X . A function f : X −→ Y is continuous

at the point a iff for all ε > 0 there exists δ > 0

such that

f (S(a; δ)) ⊂ S(f (a); ε).
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And the property f (A) ⊂ B iff A ⊂ f −1(B)

implies...
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Definition
Let (X , d) and let a ∈ X . A subset N of X is

called a neighborhood of a if there exists a δ > 0

such that

S(a; δ) ⊂ N .

a
∂

N

S(a;∂)
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Theorem
Let (X , d) and (X ′, d ′) be two metric spaces, and

let a ∈ X . A function f : X −→ Y is continuous

at the point a iff for every neighborhood N of

f (a) there exists a corresponding neighborhood M

of a such that

f (M) ⊂ N ,

or equivalently

M ⊂ f −1(N).
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Proof.
On the blackboard...
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Definition
A subset O of a metric space is said to be open if

it is a neighborhood of each of its point.

y

x
z

O
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Example
1 Every “open interval” ]a, b[ is an open set of R

(equipped with the usual metric).

]a, b[= {x ∈ R : a < x < b},

2 Every cross product of “open intervals” ]ai , bi [

is an open set of Rn (equipped with the usual

metric).

Πn
i=1]ai , bi [.
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Lemma
Every open sphere is open.
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Proof.
Let S(a; δ) be an open sphere. We need to prove

that S(a; δ) is a neighborhood of each of its point.

Let b ∈ S(a; δ) and let ε < δ − d(a, b). Then

S(b; ε) ⊆ S(a; δ), which concludes the proof.

a

b

∂
d(a,b)

∂ - d(a,b)

ε

S(a,∂)
S(b,ε)
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Theorem
Let (X , d) and (X ′, d ′) be two metric spaces and

let f : (X , d) −→ (X ′, d ′). Then f is continuous

if and only if the inverse image of every open set

of X ′ is an open set of X .

Proof.
On the blackboard.
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Topological spaces
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Definition
A topological space is a pair (X ,J ), where X is a

non-empty set and J is a collection of subsets of

X such that
1 X , ∅ ∈ J ,
2 If O1, . . . , On ∈ J , then

O1 ∩ O2 ∩ . . . ∩ On ∈ J ,
3 If Oα ∈ J for each α ∈ I , then

⋃
α∈I Oα ∈ J .
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Elements of the collection J are called the open

sets of X .

A subset is said to be closed if it is the
complement of an open set.
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Example

Let (X ,J ) be a topological space.

∅ is closed, since ∅c = X is open.

X is closed, since X c = ∅ is open.

Therefore ∅ and X are clopen sets.
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From metric spaces to topological spaces...

Let (X , d) be a metric space and let J be the
collection of open sets of X , Then (X ,J ) is a
topological space.
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Example
1 The real line is the topological space arising

from the metric space (R, d), where

d(a, b) = |b − a|.
2 The Euclidian n-space with the usual topology

is the topological space arising from the metric

space (Rn, d).
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Example
1 Let X be a non-empty arbitrary set. Let

J = {∅, X}. Then (X ,J ) is a topological

space.
2 Let X be a non-empty arbitrary set. Then

(X ,P(X )) is a topological space. This

topology on X is the one which contains the

largest number of elements. It is called the

discrete topology.
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Example

Let X = {a, b}. Let J1 = {∅, X},
J2 = {∅, {a}, X}, J3 = {∅, {b}, X},
J4 = {∅, {a}, {b}, X}. Then (X ,Ji), for

i = 1, 2, 3, 4, are four distinct topological spaces.
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Example

Let N be the set of positive integers. For each

n ∈ N, let On = {n, n + 1, n + 2, . . .}, and let

J = {∅, O0, O1, O2, . . .}. Then (N,J ) is a

topological space.
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Definition
Let (X ,J ) and (X ′,J ′) be two topological

spaces and let f : X −→ Y . Then f is said to be

continuous if and only if the preimage of any open

set is an open set.
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Definition

The closure Ā of a subset A is the smallest closed

set containing A.

A

A
_
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Lemma

A is closed if and only if A = Ā.

Proof.
(⇒) Suppose that A is closed. Then the

smallest closed set containing A is A

itself, i.e Ā = A.

(⇐) Suppose A = Ā. Since Ā is closed by

definition, then A is also closed.
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Definition
The interior int(A) of a subset A is the largest

open set contained in A.

A
int(A)
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Compactness
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A compact set is a closed and bounded set.

Bounded in the sense that it can be covered with

a finite number of open sets.

Compact set
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Definition
Let X be a set and let (Ai)i∈α be a family of sets.

The collection (Ai)i∈α is called a covering of X if

X ⊆
⋃

i∈α Ai .

Given β ⊆ α, if the the subfamily (Ai)i∈β still

covers X , then (Ai)i∈β is called a subcovering of

(Ai)i∈α.

If Ai is open for each i ∈ α, then (Ai)i∈α is called

an open covering of X .
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Example

For each integer n, let An = [n, n + 1]. Then

(An)n∈Z is an infinite covering of R.

|R
... ...0 1 2-1-2
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Definition
A topological space (X ,J ) is called compact iff

from each open covering of X , one may extract a

finite subcovering.

Definition
A subset A of (X ,J ) is called compact iff from

each open covering of A, one may extract a finite

subcovering.
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Lemma
The closed interval [0, 1] is compact.
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Towards a contradiction, suppose that [0, 1] is not
compact. Then there exists an open covering
(Oα)α∈I of [0, 1] from which one cannot extract a
finite subcovering of [0, 1].
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Therefore, we can build the following infinite

sequence of intervals [an, bn], for any n > 0:
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Therefore, we can build the following infinite

sequence of intervals [an, bn], for any n > 0:

0 1a1 = b1
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0 1a1 = b1

Jérémie Cabessa (ISI) Introduction to Topology 11th July 2007 52 / 68



Therefore, we can build the following infinite

sequence of intervals [an, bn], for any n > 0:

0 1a1=a2 = b1b2
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Therefore, we can build the following infinite

sequence of intervals [an, bn], for any n > 0:

0 1a1=a2 = b1b2
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Therefore, we can build the following infinite

sequence of intervals [an, bn], for any n > 0:

0 1a1=a2 = b1b2
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Therefore, we can build the following infinite

sequence of intervals [an, bn], for any n > 0:

0 1a1=a2 = b1b2=b3a3
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Therefore, we can build the following infinite

sequence of intervals [an, bn], for any n > 0:

0 1a1=a2 = b1b2=b3a3

And so on, and so forth.

Jérémie Cabessa (ISI) Introduction to Topology 11th July 2007 57 / 68



For each n > 0, one has

|bn − an| = 1
2n ,

an ≤ an+1 ≤ bn+1 ≤ bn. (1)

Now let a be the smallest upper bound of the

(ai)i>0, and let b be the greatest lower bound of

the (bi)i>0

0 1...a1 a2 a3 b1b2b3...ba
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Then (1) implies an ≤ a ≤ b ≤ bn, for all n > 0.

Hence |b − a| ≤ 1
2n , for all n > 0. Therefore

a = b.
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Since the covering (Oα)α∈I covers [0, 1] and

a = b ∈ [0, 1], there exists an open set Oβ such

that a ∈ Oβ.

Since Oβ is open, there is an ε > 0 such that

S(a; ε) ⊆ Oβ.

Now let N large enough such that 1
2N < ε. Then

bN − aN = 1
2N < ε.
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One has bN − aN < ε and a = b ∈ [aN , bN ].

Therefore [aN , bN ] ⊆ S(a; ε) ⊆ Oβ.

0 1a = b

aN bN

S(s;ε)

Oß

In other terms, [aN , bN ] is covered with a finite
subcovering of (Oα)α∈I , namely Oβ itself. A
contradiction.

Jérémie Cabessa (ISI) Introduction to Topology 11th July 2007 61 / 68



One has bN − aN < ε and a = b ∈ [aN , bN ].

Therefore [aN , bN ] ⊆ S(a; ε) ⊆ Oβ.

0 1a = b

aN bN

S(s;ε)

Oß

In other terms, [aN , bN ] is covered with a finite
subcovering of (Oα)α∈I , namely Oβ itself. A
contradiction.

Jérémie Cabessa (ISI) Introduction to Topology 11th July 2007 61 / 68



Corollary

Each closed interval [a, b] is compact.
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Connectedness
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A topological space is connected if it is all of one

piece. That is if it is impossible to decompose it

into two disjoint non-empty open sets.

Connected space Non-connected space
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Definition
A topological space X is said to be connected if

the only two clopen sets of X are ∅ and X itself.
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Lemma
A topological space X is not connected if and only

if there are two non-empty open sets P and Q

such that

P ∪ Q = X ,

P ∩ Q = ∅.
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Proof.
(⇒) If X is not connected, there exists a

clopen set C such that C 6= ∅, X .

Therefore C and C c are open sets, and

C ∪ C c = X and C ∩ C c = ∅.
(⇐) If there are two non-empty open sets P

and Q such that P ∪ Q = X and

P ∩ Q = ∅, then obviously P = Qc and

Q = Pc . These properties imply P and

Q clopen different from ∅ and X .
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One can prove that connected subsets of the real
line R are exactly the intervals.
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