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» We introduce a bio-inspired paradigm for neural computation
based on the concept of synfire rings.

» Boolean neural networks composed of synfire rings can simulate
finite automata and bounded space Turing machines.

> We provide an robust and optimal-size implementation of fi-

nite automata by Boolean neural networks partly composed of
synfire .

JErEMIE CABESSA & JIRf Stma



INTRODUCTION FSA BNNs FSA & BNNs SYNFIRE RINGS FSA & SR-BNNs CONCLUSION
o ° 0o e} 0000 000 oo

FINITE STATE AUTOMATA & BOOLEAN FUNCTIONS

Automaton

JErEMIE CABESSA & JIRf Stma



INTRODUCTION FSA BNNs FSA & BNNs SYNFIRE RINGS FSA & SR-BNNs CONCLUSION
o ° 0o e} 0000 000 oo

FINITE STATE AUTOMATA & BOOLEAN FUNCTIONS

Automaton

JErEMIE CABESSA & JIRf Stma



INTRODUCTION FSA BNNs FSA & BNNs SYNFIRE RINGS FSA & SR-BNNs CONCLUSIO
o ° 0o e} 0000 000 oo

FINITE STATE AUTOMATA & BOOLEAN FUNCTIONS

Automaton Boolean function
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AUTOMATA AND BOOLEAN NEURAL NETS:
OPTIMAL-SIZE IMPLEMENTATION

THEOREM (LupAaNOV (1973))

Let A be a finite state automaton with n states'. Then the four
layer Boolean recurrent neural network N described above
simulates A and has an asymptotical optimal size of ©( /n).

Yie,pr+ps+ps= [log(n)] + 2
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).
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» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).
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» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of abstract neural computation based
on synfire rings.

> Computational states are represented by sustained activities of
synfire rings — i.e., attractors.

» The global computational process is robust to various kinds of
architectural plasticities and synaptic noises.
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AUTOMATA AND SYNFIRE RING-BASED BOOLEAN
NEURAL NETS: OPTIMAL-SIZE IMPLEMENTATION

THEOREM

Let A be a finite state automaton with n states. Then the synfire
ring-based Boolean recurrent neural network N' described above
simulates A and has an asymptotical optimal size of

O(Vk - n) = O(y/n) (k is the fixed number of ring’s levels).
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AUTOMATA / TURING MACHINES AND SYNFIRE
RING-BASED BOOLEAN NEURAL NETS

THEOREM

Let A be a finite state automaton or M be a bounded space
k-tape Turing machine. Then, A and M can be simulated by a
Boolean neural network N fully composed of synfire rings.

P In this case, the construction is not optimal.
» The architecture is “fully” composed of synfire rings.

> Play movie...
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> We presented a new paradigm of neural computation based on
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CONCLUSIONS

> We presented a new paradigm of neural computation based on
synfire rings.

» We provided an optimal-size implementation of finite state au-
tomata by synfire ring-based neural networks. The construction
still needs to be implemented...

> We intend to study the issue of learning within the synfire ring
architecture.

» Towards biological neuronal computers...
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