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INTRODUCTION

e We consider Echo State Networks (ESNs) in the context of
Natural Language Processing (NLP).
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INTRODUCTION

e We consider Echo State Networks (ESNs) in the context of
Natural Language Processing (NLP).

e More specifically, we apply ESNs with pre-trained word embed-
dings (GloVe) as inputs for text classification tasks.

e We show that ESNs are robust, efficient and fast candidates for
text classification tasks.

e Some works about text classification with ESNs have already
been done, but along different lines (different training paradigms).
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DATASETS

e IMDb: Sentiment Analysis. Large Movie Review Dataset (IMDb)
for binary sentiment classification.
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DATASETS

e IMDb: Sentiment Analysis. Large Movie Review Dataset (IMDb)
for binary sentiment classification.

e TREC: Text REtrieval Conference dataset (TREC) for ques-
tion classification.

» TREC-6: questions classified into 6 classes (coarse-grained).
» TREC-50: questions classified into 50 classes (fine-grained).

EFFICIENT TEXT CLASSIFICATION WITH ECHO STATE NETWORKS CABESSA ET AL.



INTRODUCTION ['EXT CLASSIFICATION EcHO STATE NETWORKS ['RAININC REsuLTS CONCLUSIONS
o o @000 o 00000 e}

EcHO STATE NETWORKS

Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:
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Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:

e An input layer

inputs reservoir outputs
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e An input layer
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Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:

e An input layer
e A reservoir of neurons: random, recurrent and sparse
e An output layer

inputs reservoir outputs
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EcHO STATE NETWORKS

Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:

e An input layer

e A reservoir of neurons: random, recurrent and sparse
e An output layer

e Only output weights are trained!

inputs reservoir outputs
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ESNS: INITIALIZATION

e Input weights Wi, (fixed):

Win, sampled from U(—a, a), where a is the input scaling.

inputs reservoir outputs
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ESNS: INITIALIZATION
e Input weights Wi, (fixed):
Win, sampled from U(—a, a), where a is the input scaling.

e Reservoir weights W s (fixed):
W es sampled from U(—1,1), set to 0 with sparsity rate 0.99, and
rescaled to have a specific spectral radius p < 1.

inputs reservoir outputs

Wies
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ESNS: INITIALIZATION
e Input weights Wi, (fixed):

Win, sampled from U(—a, a), where a is the input scaling.
e Reservoir weights W s (fixed):

W es sampled from U(—1,1), set to 0 with sparsity rate 0.99, and
rescaled to have a specific spectral radius p < 1.

e Output weights Wyt (trainable!):

Here, Wy closed-form solution of a simple Ridge Regression.

inputs reservoir outputs
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ESNS: DYNAMICS
e We consider leaky integrator ESNs (LI-ESNs):

inputs reservoir outputs

Wies
X(t+1) = fres (Winu(t +1)+ Wresx(t)>
x(t+1) = (1—-a)x(t)+ax(t+1) «is the leaking rate
YE+D) = four(Wourx(t +1))
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ESNS: INPUT FEATURES

e We consider the pre-trained word embedding GloVe-840B-
300d to obtain the input features.

inputs reservoir outputs

Wies
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e We consider the pre-trained word embedding GloVe-840B-
300d to obtain the input features.

e GloVe-840B-300d is a 300-dimensional vector representation for
words (obtained via some unsupervised learning algorithm).
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ESNS: INPUT FEATURES

e We consider the pre-trained word embedding GloVe-840B-
300d to obtain the input features.

e GloVe-840B-300d is a 300-dimensional vector representation for
words (obtained via some unsupervised learning algorithm).

e Any input text is embedded into a sequence of 300-dimensional
vectors.

inputs reservoir outputs
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ESNs: TRAINING

texts o= (whwi,...) m=(whuwi,...) n=(wlui...)
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ESNs: TRAINING
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RESULTS: EFFECT OF EMBEDDING

e The quality of the pre-trained embedding plays an impor-
tant role (might be counter intuitive).

RR-baseline and ESN on IMDB
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RESULTS: EFFECT OF THE RESERVOIR
» ESN = EMB + RES + RR; RR-baseline = EMB + RR
= ESN vs RR-baseline allows to evaluate the contribution of the
reservoir.
e The temporal dynamics captured by the reservoir drasti-
cally improves the results.

IMDB
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RESULTS: EFFECT OF THE RESERVOIR
» ESN = EMB + RES + RR; RR-baseline = EMB + RR
= ESN vs RR-baseline allows to evaluate the contribution of the
reservoir.
e The temporal dynamics captured by the reservoir drasti-
cally improves the results.
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RESULTS: EFFECT OF THE RESERVOIR
» ESN = EMB + RES + RR; RR-baseline = EMB + RR
= ESN vs RR-baseline allows to evaluate the contribution of the
reservoir.
e The temporal dynamics captured by the reservoir drasti-
cally improves the results.
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RESULTS: COMPARISON WITH BI-LSTM NETWORKS

e ESNs achieve competitive results with a significantly faster
training time than Bi-LSTM.!

IMDb

Accuracy (%)  Training time (sec.)
RR (none) 76.25 16.97 (batch=64)?
RR (mean) 85.11 3.74 (batch=2048)
RR (lex. mean) 86.06 2.49 (batch=2048)
Bi-LSTM (128) 87.14 £ 0.40 899.32 £4.01
ESN (5000, mean) 87.78 £0.11 38.47+0.14
ESN (5000, lex. mean) | 88.46 + 0.08 39.10+0.23

TABLE: Test accuracy and training time of the RR-baselines, Bi-LSTM and ESNs over
the IMDb dataset.

'1 GPU, 32 GB, NVIDIA V100
2Qut of memory on GPU; hence trained on CPU
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RESULTS: COMPARISON WITH BI-LSTM NETWORKS

e ESNs achieve competitive results with a significantly faster
training time than Bi-LSTM.3

TREC-6

Accuracy (%)  Training time (sec.)
RR (none) 56.20 1.92 (batch=2048)
RR (mean) 81.80 0.42 (batch=2048)
RR (lex. mean) 78.80 0.13 (batch=2048)
Bi-LSTM (128) 88.65 £ 0.38 27.04 +£5.11
ESN (3000, mean) 91.12 +0.48 2.64+0.12
ESN (4000, lex. mean) | 90.72 4 0.66 4.35 £ 0.09

TABLE: Test accuracy and training time of the RR-baselines, Bi-LSTM and ESNs over
the TREC-6 dataset.

31 GPU, 32 GB, NVIDIA V100
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RESULTS: COMPARISON WITH BI-LSTM NETWORKS

e ESNs achieve competitive results with a significantly faster
training time than Bi-LSTM.*

TREC-50

Accuracy (%)  Training time (sec.)
RR (none) 27.40 1.81 (batch=2048)
RR (mean) 65.20 0.15 (batch=2048)
RR (lex. mean) 65.40 0.13 (batch=2048)
Bi-LSTM (128) 79.56 + 1.43 27.12 +0.93
ESN (5000, mean) 83.96 + 0.23 7.02+0.14
ESN (5000, lex. mean) | 83.3240.27 7.13+£0.23

TABLE: Test accuracy and training time of the RR-baselines, Bi-LSTM and ESNs over
the TREC-50 dataset.

41 GPU, 32 GB, NVIDIA V100
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CONCLUSIONS

e ESNSs can be considered as robust, efficient and fast candidates
for text classification tasks.
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CONCLUSIONS

e ESNSs can be considered as robust, efficient and fast candidates
for text classification tasks.

e State-of-the-art NLP are generally children of the “transformer
revolution” (GPT, GPT-2, GPT-3, BERT, ...). Achieve im-
pressive performance but can be very resource consuming.
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CONCLUSIONS

e ESNSs can be considered as robust, efficient and fast candidates
for text classification tasks.

e State-of-the-art NLP are generally children of the “transformer
revolution” (GPT, GPT-2, GPT-3, BERT, ...). Achieve im-
pressive performance but can be very resource consuming.

e By contrast, our work fits within the context of light and fast-
to-train models for NLP.
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CONCLUSIONS

Thank youl!
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