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Abstract

Synfire rings are fundamental neural circuits capable of conveying self-sustained activities in a
robust and temporally precise manner. We propose a Turing-complete paradigm for neural com-
putation based on synfire rings. More specifically, we provide an algorithmic procedure which,
for any fixed-space Turing machine, builds a corresponding Boolean neural network composed
of synfire rings capable of simulating it. As a consequence, any fixed-space Turing machine with
tapes of length NV can be simulated in linear time by some Boolean neural network composed
of O(N) rings and cells. The construction can naturally be extended to general Turing machines.
Therefore, any Turing machine can be simulated in linear time by some Boolean neural network
composed of infinitely many synfire rings. The linear time simulation relies on the possibility
to mimic the behavior of the machines. In the long term, these results might contribute to the
realization of biological neural computers.

Introduction

In theoretical neural computation, the computational capabilities of diverse models of neural net-
works have been shown to range from the finite state automaton degree, up to the Turing or even
to the super-Turing level [2, 5-8]. But the neural networks involved in these results are generally
far from the biological reality.

Synfire chains are fundamental neural circuits where every layer is connected to the next by means
of convergent/divergent excitatory synapses |1, 4]. Synfire rings are looping synfire chains [?]. As
an additional dynamical feature, the ring shape enables the emergence of self-sustained activities,
which correspond to attractor dynamics.

Based on these considerations, an automaton-complete paradigm for neural computation based
on synfire rings has been proposed [3]. Here, we extend these results to Turing computation.

Boolean neural networks and Turing machines

O KSC} =

|~

a;2
neuron , / e AN ﬁl
) @ / ﬁ[
.11 —_ —
bt = —~ q

S SRS
N\ 9

Figure 1. (Left) Example of a Boolean recurrent neural network (BRNN). (Right) Dynamics of a Boolean neuron.
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Figure 2. (Left) lllustration of a Turing machine (TM). (Right) Graph representation of a 2-tape Turing machine deciding
the non context-free language {0"1"0" : n > 0}.
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Synfire rings

A synfire ring is a looping synfire chain (cf. Figure 3). The synfire ring architecture exhibits the
following important dynamical properties [3]:

't allows for the emergence of a self-sustained activity.

It is robust against synaptic failures and unreliabilities.

It forces synchronicity among all cells of a same layer.

't leads to the emergence of a discrete temporal structure.
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Figure 3. (Left) A synfire ring: the filled cells form the activation layer of the ring. (Right) Raster plot representing the
self-sustained activity of a synfire ring.

Four kinds of connections between cells and rings and between rings and rings are considered:

= The cell-to-ring one-shot excitation (type A).
= The ring-to-ring constant excitation (type B).
= The ring-to-ring constant excitation/one-shot inhibition (type C).

= The ring-to-ring bidirectional one-shot inhibition (type D).
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Figure 4. Connection patterns between a Boolean cell ¢ and a synfire ring R (panel A), or between two synfire rings
Ry and Ry (panels B, C, D). Each ring is associated with an inhibitory cell (blue cell). In each panel, a schematic
representation of the connection pattern is provided on top and its detailed description given below.

Results
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Figure 5. textbf(Left) General architecture of a Boolean recurrent neural network (BRNN) composed of syfire rings
simulating a 1-tape Turing machine. The purple nodes are the clock cells. The white and red circles represent active
and quiet synfire rings, respectively. The cell-to-ring and ring-to-ring connection patterns are those described Fig-
ure 4. (Right) Raster plot: activity of the BRNN composed of synfire rings simulating the 2-tape TM of Figure 2 (right
panel) over input 0001110000.
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The raster plot of Figure 5 (right panel) shows a BRNN composed of synfire rings that simulates
the 2-tape TM of Figure 2 (right panel) on input w = 000111000. The network simulates the
machine correctly. More specifically, the successive program, position, symbol and cache rings
of the network which are activated reflect precisely to the successive states, symbols read and
symbol written of the 2-tape TM.

Conclusion

We proposed a novel Turing complete paradigm for neural computation based on synfire rings.
With these achievements, we do not intend to argue that brain computational processes really
perform simulations of Turing machines in the way described here. Rather, our intention is to
show that a neuronal paradigm for abstract computation based on sustained activities of cell
assemblies — the synfire rings — is possible and potentially exploitable. These results might open
the way for realization of biological neural computers.
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Theorem.

1. Let M be a fixed-space k-tape TM and w € 2=/ be some input. Then, there exists some
BRNN composed of O(N) synfire rings and cells that simulates M in linear time.

2. Let M be a general k-tape TM and w € ¥* be some input. Then, there exists a BRNN N
composed of infinitely many synfire rings that simulates M in linear time.

Proof (sketch).

Let M be a fixed-space k-tape TM. There is an algorithmic procedure which constructs a BRNN
N containing N O(N) synfire rings and simulating M in linear time. An schematic illustration
of the BRNN N is illustrated in Figure 5 (left panel).
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