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Introduction

The fields of artificial neural networks and theoretical computer
science have been linked since their inception (McCulloch and
Pitts 1943, Kleene 1956, Minsky 1967).
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Synaptic weights  Activation function Computational power

rational hard-threshold finite state automaton
rational (linear) sigmoid Turing machine
real (linear) sigmoid beyond Turing limits
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(8),(9),(5),(1)
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An attractor is a set of states visited infinitely often by the net-
work along some infinite evolution.
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Evolution of the net «—  Pathin the transition state diagram

Attractor of the net  «—  Cycle in the transition state diagram
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m We assume that attractors can be of two kinds: either
meaningful or spurious.
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m We assume that attractors can be of two kinds: either
meaningful or spurious.

m An infinite stimulation s € [B*]“ is accepted by N if its
corresponding evolution eventually gets trapped by a
meaningful attractor.

Conclusion
]
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m We assume that attractors can be of two kinds: either
meaningful or spurious.

m An infinite stimulation s € [B*]“ is accepted by N if its
corresponding evolution eventually gets trapped by a
meaningful attractor.

m The set L(N) C [BX]“ of all infinite stimulations accepted

by N is called the neural language recognized by N.

Conclusion
]
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Proposition

Let L C [BX“. Then the following are equivalent:
m L is recognizable by some network.
m L is recognizable by some Muller automaton.
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Proposition
Let L C [BX“. Then the following are equivalent:

m L is recognizable by some network.
m L is recognizable by some Muller automaton.

Proof.
1/2
N
1/2
@ 1/2 —1/2
1/2 = 1/2
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Let L C [BX“. Then the following are equivalent:
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We translate the Wadge classification theory from the automata
to the neural network context . . .

N <w N’ iff there exists f : [B¥]“ — [B/] continuous s.t.
s € LN) < f(s) € LN)

N <w N iff N <y N and N' £y N
N=y N iff N<y N andN' <y N

Definition
The collection of all nets ordered by <y is called the RNN
hierarchy.

A Hierarchical Classification of First-Order Recurrent Neural Networks Jérémie Cabessa



Introduction First-order recurrent neural networks The RNN hierarchy Conclusion
o 000 0000 o

Theorem

e The RNN hierarchy is well-founded, has width 2 and height w“ .
e The RNN hierarchy is decidable.

height w* height w*

Decidabiliy

procedure J \
I
I
I
l
I
Given any network A/ J \

A Hierarchical Classification of First-Order Recurrent Neural Networks Jérémie Cabessa

0. 0.
xxn
“
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Decidability procedure:
1 Compute the state transition diagram of \.
2 Find the maximal alternating and co-alternating trees in it.

3 The length of the maximal alternating and co-alterniating trees
corresponds to the degree of A/ in the RNN hierarchy.
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Conclusion

m We translated the Wadge classification theory from the
automata to the neural network context.

m We obtain a refined decidable classification of neural nets
based on their attractive properties.
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Conclusion

m We translated the Wadge classification theory from the
automata to the neural network context.

m We obtain a refined decidable classification of neural nets
based on their attractive properties.

m Future work: search for more biologically oriented
classification; investigate the computational capabilities of
more biologically plausible neural nets.
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