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Introduction

The fields of artificial neural networks and theoretical computer
science have been linked since their inception (McCulloch and
Pitts 1943, Kleene 1956, Minsky 1967).
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An attractor is a set of states visited infinitely often by the net-
work along some infinite evolution.
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Evolution of the net ↔ Path in the transition state diagram

Attractor of the net ↔ Cycle in the transition state diagram
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We assume that attractors can be of two kinds: either
meaningful or spurious.

An infinite stimulation s ∈ [Bk]ω is accepted by N if its
corresponding evolution eventually gets trapped by a
meaningful attractor.

The set L(N ) ⊆ [Bk]ω of all infinite stimulations accepted
by N is called the neural language recognized by N .

A Hierarchical Classification of First-Order Recurrent Neural Networks Jérémie Cabessa



Introduction First-order recurrent neural networks The RNN hierarchy Conclusion

We assume that attractors can be of two kinds: either
meaningful or spurious.

An infinite stimulation s ∈ [Bk]ω is accepted by N if its
corresponding evolution eventually gets trapped by a
meaningful attractor.

The set L(N ) ⊆ [Bk]ω of all infinite stimulations accepted
by N is called the neural language recognized by N .

A Hierarchical Classification of First-Order Recurrent Neural Networks Jérémie Cabessa



Introduction First-order recurrent neural networks The RNN hierarchy Conclusion

We assume that attractors can be of two kinds: either
meaningful or spurious.

An infinite stimulation s ∈ [Bk]ω is accepted by N if its
corresponding evolution eventually gets trapped by a
meaningful attractor.

The set L(N ) ⊆ [Bk]ω of all infinite stimulations accepted
by N is called the neural language recognized by N .

A Hierarchical Classification of First-Order Recurrent Neural Networks Jérémie Cabessa



Introduction First-order recurrent neural networks The RNN hierarchy Conclusion

Proposition

Let L ⊆ [Bk]ω. Then the following are equivalent:
L is recognizable by some network.
L is recognizable by some Muller automaton.

Proof.
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We translate the Wadge classification theory from the automata
to the neural network context . . .

N ≤W N ′ iff there exists f : [Bk]ω → [Bl]ω continuous s.t.
s ∈ L(N ) ⇔ f (s) ∈ L(N ′)

N <W N ′ iff N ≤W N ′ and N ′ 6≤W N

N ≡W N ′ iff N ≤W N ′ and N ′ ≤W N

Definition

The collection of all nets ordered by ≤W is called the RNN
hierarchy.
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Theorem

• The RNN hierarchy is well-founded, has width 2 and height ωω.
• The RNN hierarchy is decidable.

height ωω height ωω

Decidabiliy
procedure

Given any network  
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Alternating and co-alternating tree of length α < ωω in a graph:

α = ωnp · mp + ωnp−1 · mp−1 + . . . + ωn1 · m1 + ωn0 · m0
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Alternating and co-alternating tree of length α < ωω in a graph:

α = ωnp · mp + ωnp−1 · mp−1 + . . . + ωn1 · m1 + ωn0 · m0

n0 alternations
• • •
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Decidability procedure:

1 Compute the state transition diagram of N .

2 Find the maximal alternating and co-alternating trees in it.

3 The length of the maximal alternating and co-alterniating trees
corresponds to the degree of N in the RNN hierarchy.
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Conclusion

We translated the Wadge classification theory from the
automata to the neural network context.

We obtain a refined decidable classification of neural nets
based on their attractive properties.

Future work: search for more biologically oriented
classification; investigate the computational capabilities of
more biologically plausible neural nets.
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