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PROJECT SUMMARY

» We introduce a bio-inspired paradigm for neural computation
based on the concept of synfire rings.
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PROJECT SUMMARY

» We introduce a bio-inspired paradigm for neural computation
based on the concept of synfire rings.

> We propose a Turing-complete neural architecture based on
synfire rings.
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PROJECT SUMMARY

» We introduce a bio-inspired paradigm for neural computation
based on the concept of synfire rings.

> We propose a Turing-complete neural architecture based on
synfire rings.

> We intend to develop learning algorithms on this architecture:
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PROJECT SUMMARY

» We introduce a bio-inspired paradigm for neural computation
based on the concept of synfire rings.

> We propose a Turing-complete neural architecture based on
synfire rings.

> We intend to develop learning algorithms on this architecture:
1. Gradient descent-based algorithms
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PROJECT SUMMARY

» We introduce a bio-inspired paradigm for neural computation
based on the concept of synfire rings.

> We propose a Turing-complete neural architecture based on
synfire rings.

> We intend to develop learning algorithms on this architecture:
1. Gradient descent-based algorithms

2. Evolutionary-based algorithms
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PROJECT SUMMARY

» We introduce a bio-inspired paradigm for neural computation
based on the concept of

» We propose a based on
synfire rings.
> We intend to develop on this architecture:
1. Gradient descent-based algorithms
2. Evolutionary-based algorithms
3. STDP-based algorithms
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SPIKING RECURRENT NEURAL NETWORKS
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Neurons' activities are modelled by Izhikevich or Hodgkin-Huxley
differential equations.
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[ZHIKEVICH SPIKING NEURAL NETWORKS
Izhikevich differential equations:

v/ =0.04v2 + 50+ 140 —u + I
u = a(bv —u)

with the auxiliary after-spike reseting:

if v >30 mV, then v <~ cand u <+ u+d
> »: membrane potential
P u: membrane recovery variable

P> [: synaptic currents

» a,b,c, d: dimensionless parameters
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HODGKIN-HUXLEY SPIKING NEURAL NETWORKS

_ 00100-V,). _ Vo
n(Vim) = exp(10= Vm) 1 Bn(Vin) = 0.125 exp( 30 )
_0.1(25 — Vi)
Oém( m) — W /Bm(v )—4exp( 18 )
1

—Vm
ap(Vin) = 0.07exp(—— 20 Uiy

(V)= 1) = BV
% = am (Vi) (1 —m) = B (Vin)m
(Vi) (1 = 1) = 50 (Vi)

Cm% =1 = gxn' (Vin = Vi) = gnam’h(Vin = Viva) = 3i(Vin — Vi)
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DRAWBACKS

» Computational states of the machines are represented by spik-
ing configurations of the network.
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DRAWBACKS

» Computational states of the machines are represented by spik-
ing configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.
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DRAWBACKS

» Computational states of the machines are represented by spik-
ing configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

> Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.
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DRAWBACKS

» Computational states of the machines are represented by spik-
ing configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

> Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.

* Network should be robust to architectural plasticity and synap-
tic noise.
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

O

O

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 00000 00000000 0o

SYNFIRE CHAINS
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» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0@00 00000 00000000 0o

SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS
» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RING ARCHITECTURE
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NEURAL COMPUTATION WITH SYNFIRE RINGS

> We introduce a paradigm of abstract neural computation based
on synfire rings.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

> We introduce a paradigm of abstract neural computation based
on synfire rings.

» Computational states are represented by sustained activities of
synfire rings — i.e., attractors.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

> We introduce a paradigm of abstract neural computation based
on synfire rings.

» Computational states are represented by sustained activities of
synfire rings — i.e., attractors.

» The transitions between such attractors are perfectly controlled
by the inputs.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

> We introduce a paradigm of abstract neural computation based
on synfire rings.

» Computational states are represented by sustained activities of
synfire rings — i.e., attractors.

» The transitions between such attractors are perfectly controlled
by the inputs.

» The global computational process is robust to various kinds of
architectural plasticities and synaptic noises.
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BINARY ADDER AUTOMATON
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o 0000000 0000

RESULTS: AUTOMATA
0e000

RESULTS:
GENERAL CONSTRUCTION

['URING MACHINES
00000000

Furure WORK
0o

inputs

state qo

state g1

outputs
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©

input (::)

input ('1')

input (L‘))
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 0®000 00000000 0o

GENERAL CONSTRUCTION

inputs state qo state ¢1 outputs

input (::)

input ('1')

input (L‘))

input (:)
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 0®000 00000000 0o

GENERAL CONSTRUCTION

=
=

a a &
5
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RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LT 7

2]
AL

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LT 7

2]
AL

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES Furure WORK
o 0000000 0000 00@00 00000000 0o

RING TRANSITION

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTS: TURING MACHINES Furure WORK
o 0000000 0000 00080 00000000 0o

AUTOMATA & BOOLEAN, IZHIKEVICH AND
HoDGKIN-HUXLEY RNNS WITH SYNFIRE RINGS

Play movie...
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS

['URING MACHINES FUTURE WORK
0000e o 00

AUTOMATA & HODGKIN-HUXLEY RNNS WITH
SYNFIRE RINGS

The construction is generic, therefore, the following results hold:

THEOREM (CABESSA & MASULLI 17, CABESSA ET AL.

17, CABESSA & TCHAPTCHET 18)

» Any finite state automaton can be simulated by some
neural network composed of synfire rings.
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES FUTURE WORK
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AUTOMATA & HODGKIN-HUXLEY RNNS WITH
SYNFIRE RINGS

The construction is generic, therefore, the following results hold:

THEOREM (CABESSA & MASULLI 17, CABESSA ET AL.

17, CABESSA & TCHAPTCHET 18)

» Any finite state automaton can be simulated by some
neural network composed of synfire rings.

» Any finite state automaton can be simulated by some (noisy)
spiking neural network composed of synfire rings.
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES FuTUuRE WORK
0000000 0000 0000e 00000000

AUTOMATA & HODGKIN-HUXLEY RNNS WITH
SYNFIRE RINGS

The construction is generic, therefore, the following results hold:

THEOREM (CABESSA & MASULLI 17, CABESSA ET AL.

17, CABESSA & TCHAPTCHET 18)

» Any finite state automaton can be simulated by some
neural network composed of synfire rings.

» Any finite state automaton can be simulated by some (noisy)
spiking neural network composed of synfire rings.

» Any finite state automaton can be simulated by some
spiking neural network composed of synfire rings.
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PROJECT STATE OF THE ART YESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK

@0000000

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

[OT0[o[0 [A[T[I[TTb oTe eo] -+« imput tape
1+

LD LB oo e]e] -+ work tape
T

/ Program  current state: q;, \

(@insb,0) = (qace; b,6, S, 5)

(Gin,0,0) + (q0,0,b,R,S)

(@in,1,0) = (Gre;,1,0,5,5)

(90,0,b) > (qobis; 0,0, R, R)  (qbis,0,b)  +—  (qo,0,0, R, R)
(90.1,6) +— (q1,1,1,R, L) (qobis, 1,b) +—  (q1.1,1,R,L)
(90,0,0) = (qrej;b,0,5.5)  (qovis: 0,0) = (¢rej: 6,6, 5, 5)
(01,1,0) = (quis; L, L, R, L) (quis; 1,0) = (q1,1,1, R, L)
(q1,6,1) = (daces,1,8,S)  (quiss 0:1) = (daces b, 1,5, 5)
(q1,0,0) = (4rej;0,0,5,5)  (qubis: 0,0) = (4re;;,0,5,5)
(g1, 1,1) = (grej; 1,1,5.9)  (qwis; 1,1) = (are;, 1,1,5,5)

wl ,0,1) = (4re»0,1,8,8)  (q18is:0,1) = (gre;, 0,1, S, y
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PROJECT STATE OF THE ART

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

VESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK
©0000000 0o

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

LD LB oo e]e] -+ work tape
T

-

Qin, 0,b)
Qin, 0,b)
i, 1,b)

11111111111

Program  current state: q;, \

(Gaces b, b, S, S)

(q0,0,b, R, S)

(Grej» 16,8, 5)

(qobis; 0.0, R, R)  (gbis;0,0) = (g0,0,0, R, R)
(¢1,1,1,R, L) (qovis; 1.b) = (q1,1,1,R,L)
(@rejs0,6,8,8)  (qoviss b,0) = (rej, 0,0, 5, S)
(qupiss L1, R, L) (qupis 1,0) = (q1,1,1,R,L)
(ace: ,1,5,9)  (quvis; 1) = (dace, b, 1,8,9)
(Grej»0,0,5.8)  (qibis: 0,0) = (Gre;0,0,5,5)
(rej> 1,1,8,8)  (quvis: 1,1) = (@rej» 1,1, 5,5)
(e720.1.5.5)  (qpis:0.1) (q,.,,]‘o,l,s,y
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PROJECT STATE OF THE ART

TURING MACHINE

I'S: AUTOMATA

REsuLTs: TURING MACHINES
©0000000

FuTUuRE WORK

Turing machine recognizing the non regular and non context-free

language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

LD LB oo e]e] -+ work tape
T

Program  current state: qo

(gin:0,0) = (ace; b,b,5,5)

(gin0,0) +— (0,0,b, R, S)

(@in,1,0) = (Gre;,1,0,5,5)

(40.0,b)  —  (qobis: 0,0, R, R) (qbis,0,b)

(90,1,6) = (q1,1,1,R, L) (qobiss 1,b)

(90,0,0) = (rej;b,6,8,5)  (qovis: b D)

(¢1,1,0)  —  (qubis, 1,1, R. L) (qupis, 1,0)

(q1,0,1) = (Qace; 5, 1,9,8)  (qupis; b, 1)

(q1,0,0) = (4rej,b,0.5,8)  (qivis; b, 0)

(q1,1,1) = (¢re;»1,1,8,5)  (qupis, 1,1)
wl 01) 5 (0o 0,1,58)  (gupie,0,1)

~

(90,0,0,R, R)
(q1,1,1,R, L)
(arej: 6,0, 5, 5)
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PROJECT STATE OF THE ART YESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK

@0000000

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

PLLLL L e e]6] -+ work tape
T

/ Program  current state: qopis \

(@insb,0) = (qace; b,6, S, 5)
(Gin,0,0) + (q0,0,b,R,S)

(@in,1,0) = (Gre;,1,0,5,5)

(40.0,b)  —  (qobis» 0,0, R, R)  (qopis.0,0) +—  (go,0.0,R. R)

(90.1,6) +— (q1,1,1,R, L) (qobis, 1,b) +—  (q1.1,1,R,L)

(90,0,0) = (qrej;b,0,5.5)  (qovis: 0,0) = (¢rej: 6,6, 5, 5)

(01,1,0) = (quis; L, L, R, L) (quis; 1,0) = (q1,1,1, R, L)

(a1,6,1) = (dace;6,1,5,8)  (qupiss 0:1) = (daces b, 1,5, 5)

(q1,0,0) = (4rej;0,0,5,5)  (qubis: 0,0) = (4re;;,0,5,5)

(g1, 1,1) = (grej; 1,1,5.9)  (qwis, 1,1) = (are;, 1,1,5,5)

wl,o.l) = (Gre»0,1,5,9)  (qupis;0,1) = (Gre;,0,1,5, y
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PROJECT STATE OF THE ART

TURING MACHINE

VESULTS: AUTOMATA

REsuLTs: TURING MACHINES FUTURE WORK
©0000000 oo

Turing machine recognizing the non regular and non context-free

language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

OO L Lo e]e] -+ work tape
T

(@insb,0) = (qace; b,6, S, 5)

(gin0,0) +— (0,0,b, R, S)

(@in,1,0) = (Gre;,1,0,5,5)

(g0.0,b)  —  (qobis: 0,0, R, R)  (qobis,0,b)

(90,1,) = (q1,1,1.RL) (qobis> 1,b)

(90,6,0) = (Grejs6,6,5,8)  (qoviss b, D)

(q1,1,0) = (quis: L1, R, L) (qubis: 1,0)

(q1,0,1) = (dace;b,1,5,5)  (quvis, b, 1)

(@1,6,0) = (Grej»6,0,5,8)  (qupis; b,0)

(a1, 1,1) = (@rej» 1,1,8,9)  (q1vis, 1,1)
wl,o,l) = (4re;,0,1,5,8)  (q1pis,0,1)

/ Program  current state: qo

11111111

~

(90,0,0,R, R)
(e L1 R L)
(Grej» 0,6, 5, S)
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PROJECT STATE OF THE ART YESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK

@0000000

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

loJofo]blb]nlelblblo]olb]b] - work tape
t

/ Program  current state: qopis \

(@insb,0) = (dace, 6,6, 5, 5)

(gin0,0) +— (0,0,b, R, S)

(@in,1,0) = (Gre;,1,0,5,5)

(90,0,0) = (qovis; 0,0, R, R)  (qovis; 0,0) ~  (g0,0,0, R, R)
(90,1,) ~ (q¢1,1,1,R, L) (qovis, 1,b) +  (qi,1,1,R,L)
(90,0,0) = (qrej;b,0,5.5)  (qovis: 0,0) = (¢rej: 6,6, 5, 5)
(01,1,0) = (quis; L, L, R, L) (quis; 1,0) = (q1,1,1, R, L)
(q1,0,1) = (qace:b,1,8,8)  (quvis: 0, 1)+ (qace,b, 1,5, 5)
(a1,6,0) = (Gre,0,0,9,8)  (quis; 5.0) = (Gre;,0,0,5,5)
(g1, 1,1) = (grej; 1,1,5.9)  (qwis, 1,1) = (are;, 1,1,5,5)

wl,o.l) = (Gre»0,1,5,8)  (qupis, 0,1) (q,y,yj‘O,I,S,‘y
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PROJECT STATE OF THE ART YESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK

@0000000

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

loJofof1]n]b]v]o]olbfb]b]b] -+ work tape
1

/ Program  current state: ¢ \

(gin,b,b) —  (qace,b,b,5,5)

(gin0,0) +— (0,0,b, R, S)

(@in,1,0) = (Gre;,1,0,5,5)

(g0, (] b)  —  (qobis:0,0,R,R) (qobis:0,0) +—  (g0,0,0, R, R)
(90,1,6) = (q1,1,1,R, L) (qovis; 1,6)  —  (q1,1,1,R, L)
(10 b ) = (Grej 0,0, 8,5) (qobis; 0,0) = (@rej 0,0, 5,5)
(¢1.1.0) = (qipis- 1.1, R.L)  (qupiss 1,0) +—  (q1,1,1, R, L)
(g1.6.1) = (qace;0,1,5,5)  (qupissb:1) = (qace: b, 1,5,9)
(a1,6,0) = (Gre,0,0,9,8)  (quis; 5.0) = (Gre;,0,0,5,5)
(a,1,1) = (arejy 1,1.S,8)  (quiss 1,1) = (@rej, 1,1,5,5)

wl 0,1) = (¢re:0,1,8,5)  (qupis,0,1) — (q,»,yj‘O,l,S,_y
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PROJECT STATE OF THE ART YESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK

@0000000

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
1

loJofxf1]n]o]o]o]olofb]b]b] -+ work tape
t

/ Program  current state: qipis \

(@insb,0) = (dace, 6,6, 5, 5)

(gin0,0) +— (0,0,b, R, S)

(@in,1,0) = (Gre;,1,0,5,5)

(90,0,0) = (qovis; 0,0, R, R)  (qovis; 0,0) ~  (90,0,0, R, R)
(90,1,) = (q1,1,1.RL) (qovis; 1.b) = (q1,1,1,R,L)
(90,0,0) = (qrej;b,0,5.5)  (qovis: 0,0) = (¢rej: 6,6, 5, 5)
(91,1,0) = (qupis; L, R, L)  (qupis, 1,0) = (g1, 1,1, R, L)
(q1,0,1) = (dace;b,1,8,8)  (aibis; 0, 1) = (ace, b, 1,5, 5)
(q1,0,0) = (¢rej:6,0,5,8)  (qubis,0,0) = (Grej,0,0,5,5)
(g1, 1,1) = (grej; 1,1,5.9)  (qwis, 1,1) = (are;, 1,1,5,5)

wl,[].l) = (Gre»0,1,5,8)  (qupis, 0,1) (q,.,yj‘O,l,S,Ay
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PROJECT STATE OF THE ART

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

@0000000

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

lolxfafa]n]o]o]o]olofb]b]b] - work tape
t

Qin, 0,b)
4in,0,0)
i, 1,b)
90, 0 b)
.b)
.b)
0)

4o

IS

(

’

s

(
(
(
(
(90
(g
(
(
(
(

b
.1,
b,
,b.
1,
0,

DRSS
o

)
)
)

-

11111111111

Program  current state: ¢ \

(qace: b, b, 3, S)
(40,0,b, R, S)
(@rej» 1,6, 5,5)

YESULTS: AUTOMATA REsuLTs: TURING MACHINES

(qobis; 0,0, R, R)  (qobis; 0,0) = (40,0,0, R, R)
(¢1,1,1,R, L) (qovis; 1,6)  —  (q1,1,1,R, L)
(@rej::0,8,5)  (qovis, 0,0) = (Grej, 0,0, 5, 5)
(q1iss 1L, R, L) (qupis; 1,0) = (q1,1,1, R, L)
(dace;0,1,8,8)  (a1bis; ;1) = (dace, b, 1,5, )
(@rej»0,0,5,5)  (qibis; 0:0) = (Gres,0,0,5,5)
(qrej> 1,1,5,8)  (quvis, 1,1) = (Grej5 1,1, 5,5)
(@rej»0,1,5,9)  (qupis, 0,1) = (QI‘v’]‘Ovlrsa*y
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PROJECT STATE OF THE ART YESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK

@0000000

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

lxlafafa]o]o]o]o]olofb]b]b] - work tape
t

/ Program  current state: qipis \

(@insb,0) = (dace, 6,6, 5, 5)

(gin0,0) +— (0,0,b, R, S)

(@in,1,0) = (Gre;,1,0,5,5)

(90,0,0) = (qovis; 0,0, R, R)  (qovis; 0,0) ~  (90,0,0, R, R)
(90,1,6) = (q1,1,1,R, L) (qovis; 1,6)  —  (q1,1,1,R, L)
(20:6,0) = (2rej: ,0,9,9)  (qobis; ,0) = (Grejs b,0,5,5)
(01,1,0) = (quis; L, L, R, L) (quis; 1,0) = (q1,1,1, R, L)
(g1.6.1) = (qace;0,1,5,5)  (qupis-b.1) = (qace.b.1.5,9)
(a1,6,0) = (Gre,0,0,9,8)  (quis; 5.0) = (Gre;,0,0,5,5)
(01, 1,1) = (e 1,1,8,9)  (qupis; 1,1) = (arej 1,1,5,5)

wl ,0,1) = (4re»0,1,8,8)  (q10is:0,1) = (gre;, 0,1, S, y
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PROJECT STATE OF THE ART YESULTS: AUTOMATA REsuLTs: TURING MACHINES FuTUuRE WORK

@0000000

TURING MACHINE

Turing machine recognizing the non regular and non context-free
language {0"1" : n > 0}

|oJoJoJof1f1f1fr]o]b]b]b]b] - inputtape
t

lxlafafa]o]o]o]o]olofb]b]b] - work tape
t

/ Program  current state: qucc \

(@insb,0) = (dace, 6,6, 5, 5)

(gin0,0) +— (0,0,b, R, S)

(@in,1,0) = (Gre;,1,0,5,5)

(90,0,0) = (qovis; 0,0, R, R)  (qovis; 0,0) ~  (90,0,0, R, R)
(90,1,6) = (q1,1,1,R, L) (qovis; 1,6)  —  (q1,1,1,R, L)
(20:6,0) = (2rej: ,0,9,9)  (qobis; ,0) = (Grejs b,0,5,5)
(01,1,0) = (quis; L, L, R, L) (quis; 1,0) = (q1,1,1, R, L)
(g1.6.1) = (qace;0,1,5,5)  (qupis-b.1) = (qace.b.1.5,9)
(a1,6,0) = (Gre,0,0,9,8)  (quis; 5.0) = (Gre;,0,0,5,5)
(01, 1,1) = (e 1,1,8,9)  (qupis; 1,1) = (arej 1,1,5,5)

wl ,0,1) = (4re»0,1,8,8)  (q10is:0,1) = (gre;, 0,1, S, y
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES Furure WORK

[e] 0000000 0000 00000 0O@000000 [e]e]

GENERAL CONSTRUCTION

0000
f ! !
Q Q@ OO0 e
13 O—: ‘kt“‘{“}"z‘kt :@ strip c0 CACHE TAPE

WASASTESR
) @“ ‘.'@ :

0oe®!
O O O -

e o
@ ©
0 O @ @
0-0-0-@-0—-0
WEAEAEPEPERER

SYMBOL TAPE

POSITION TAPE

b 860 O

LEARNING WITH SYNFIRE RING BASED RECURRENT NEURAL NETWORKS JEREMIE CABESSA



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 00®00000 0o

PosiTioN TAPE

» Stores current head’s position.

©—> strip R
<—© strip L
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 00®00000 0o

PosiTioN TAPE

» Stores current head’s position.

©—> strip R
<—© strip L
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 00®00000 0o

PosiTioN TAPE

» Stores current head’s position.

©—> strip R
<—© strip L
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 00®00000 0o

PosiTioN TAPE

» Stores current head’s position.

©—> strip R
<—© strip L
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 00®00000 0o

PosiTioN TAPE

» Stores current head’s position.

©—> strip R
<—© strip L
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 00®00000 0o

PosiTioN TAPE

» Stores current head’s position.

©—> strip R
<—© strip L
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 000@0000 0o

SYMBOL TAPE

» Stores symbols written on the tape.

O O OO OO 0O O i
O O O O O O O O - ww
O O OO O O O O
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUuTURE WORK
o 0000000 0000 00000 000@0000 0o

SYMBOL TAPE

» Stores symbols written on the tape.

QO OO0 0 @ @ @ i
@ O O @ @ O © ©O - wwo
O©®®00O0O0O0
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CACHE TAPE

» Store symbol under the current head’s position.

INUNUINUNUINIUININY
SERERass
LR

©




> AR h RE RING LESULTS: AUTOMATA  RESULTS:
OOOOOOOOOOOOOOOOOOOOOOOO

CACHE TAPE

» Store symbol under the current head’s position.

tV/lBV/llV/AW/ABV/AKV/JBV/A

%

')

©

A

O '@ '@ '@ '@ '@ '@



PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES

[e] 0000000 0000 00000 0O0000e00

PrROGRAM RINGS

o0 0 - 0O

o/0-0 - ©O m

““ 9/l - O n
O O

from cache tape(s) to symbol and position tape(s)
reading symbols (one shot excitatory)
writing symbols and moving heads
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES Furure WORK
o 0000000 0000 00000 00000080 0o

TURING MACHINES & BOOLEAN RNNS wiTH
SYNFIRE RINGS

Play movie...
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES FUTURE WORK
o 0000000 0000 00000 0000000@ 0o

TURING MACHINES & BOOLEAN RNNS WITH
SYNFIRE RINGS

Since the construction is generic, one has the following result:

THEOREM

Any Turing machine can be simulated by some Boolean neural
network composed of synfire rings (up to assuming that the
number of rings can be extended in an unbounded manner).
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES FuTurE WORK
o 0000000 0000 00000 00000000 [ 1]

FuTuRE WORK

1. Generalize the Turing-complete synfire ring architecture to lzhike-
vich and Hodgkin-Huxley recurrent neural networks.
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA RESULTS: TURING MACHINES FuTurE WORK
o 0000000 0000 00000 00000000 [ 1]

FuTuRE WORK

1. Generalize the Turing-complete synfire ring architecture to lzhike-
vich and Hodgkin-Huxley recurrent neural networks.

2. Develop learning algorithms on this architecture (phase 2):
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PROJECT STATE OF THE ART SYNFIRE RINGS SULTS: AUTOMATA REST ['URING MACHINES FuTurE WORK
o o C ) ) [Ye)

FuTuRE WORK

1. Generalize the Turing-complete synfire ring architecture to lzhike-
vich and Hodgkin-Huxley recurrent neural networks.

2. Develop learning algorithms on this architecture (phase 2):

2.1 Gradient descent-based algorithms
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PROJECT STATE OF THE ART SYNFIRE RINGS RESULTS: AUTOMATA REsuLTs: TURING MACHINES — FUTURE WORK

[ Je]

FuTuRE WORK

1. Generalize the Turing-complete synfire ring architecture to lzhike-
vich and Hodgkin-Huxley recurrent neural networks.

2. Develop learning algorithms on this architecture (phase 2):

2.1 Gradient descent-based algorithms
2.2 Evolutionary-based algorithms
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PROJECT STATE OF THE ART SYNFIRE RINGS RES LES s: TURING MACHINES ~ FUTURE WORK

00000000 [ 1°]

FuTuRE WORK

1. Generalize the Turing-complete synfire ring architecture to lzhike-
vich and Hodgkin-Huxley recurrent neural networks.

Develop learning algorithms on this architecture (phase 2):

2.1 Gradient descent-based algorithms

2.2 Evolutionary-based algorithms

2.3 STDP-based algorithms
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FuTurE WORK
oe

CONCULSIONS

> What is lifelong learning? What is bio-inspired learning?

Classical Machine Learning Bio-Inspired
external intervention internal biological rules
of the modeller evolution, STDP, etc.
exogenous
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CONCULSIONS

> What is lifelong learning? What is bio-inspired learning?

Classical Machine Learning Bio-Inspired
external intervention internal biological rules
of the modeller evolution, STDP, etc.
exogenous

» Bio-inspired learning: emergent collective property of internal
biological rules.
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biological rules.

» Towards more bio-inspired learning learning...
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> What is lifelong learning? What is bio-inspired learning?

Classical Machine Learning Bio-Inspired
external intervention internal biological rules
of the modeller evolution, STDP, etc.
exogenous

» Bio-inspired learning: emergent collective property of internal
biological rules.

» Towards more bio-inspired learning learning...

» Long-term goal (utopia?): towards neuronal computers...
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CONCULSIONS

> What is lifelong learning? What is bio-inspired learning?

Classical Machine Learning Bio-Inspired
external intervention internal biological rules
of the modeller evolution, STDP, etc.
exogenous

» Bio-inspired learning: emergent collective property of internal
biological rules.

» Towards more bio-inspired learning learning...

» Long-term goal (utopia?): towards neuronal computers...
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FuTurE WORK
oe

CONCULSIONS

> What is lifelong learning? What is bio-inspired learning?

Classical Machine Learning Bio-Inspired
external intervention internal biological rules
of the modeller evolution, STDP, etc.
exogenous

» Bio-inspired learning: emergent collective property of internal
biological rules.

» Towards more bio-inspired learning learning...

» Long-term goal (utopia?): towards neuronal computers...

Thank youl!
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