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INTRODUCTION

» Part 1: We recall some results about the computational capa-
bilities of recurrent neural networks.
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CONCLUSION

INTRODUCTION

» Part 1: We recall some results about the computational capa-
bilities of recurrent neural networks.

» Part 2: We introduce a bio-inspired paradigm for neural com-
putation.
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FINITE STATE AUTOMATON (FSA)

Graph composed of computational states (nodes) and transitions
between those (edges).
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I'M & RNN

FINITE STATE AUTOMATON (FSA)

Graph composed of computational states (nodes) and transitions
between those (edges).

» Input u is accepted (rejected) by A if A(u) ends up in a final
(non-final) state.
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FINITE STATE AUTOMATON (FSA)

Graph composed of computational states (nodes) and transitions
between those (edges).

» Input u is accepted (rejected) by A if A(u) ends up in a final
(non-final) state.

» Regular languages (REG): class of languages recognizable by
finite state automata.
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MULLER AUTOMATON (INFINITE WORDS)

FSA with Muller acceptance condition: collection of sets of states.

T={e}{e e¢}}
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MULLER AUTOMATON (INFINITE WORDS)

FSA with Muller acceptance condition: collection of sets of states.

T={e}{e e¢}}

» Infinite word u accepted (rejected) by A if the infinite run A(u)
satisfies inf(p,) € T (inf(p,) € T).
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MULLER AUTOMATON (INFINITE WORDS)

FSA with Muller acceptance condition: collection of sets of states.

T={e}{e e¢}}

» Infinite word u accepted (rejected) by A if the infinite run A(u)
satisfies inf(p,) € T (inf(p,) € T).

» w-regular languages (w-REG): class of w-languages recog-
nizable by Muller (Biichi, Rabin, Streett, parity) automata.
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Clofijofolsf T I T T T I T TIL 1

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(42,0) = (dace; 0, )
(22,1) = (e, R)
state qin,
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Cfofrjofolsf T I T T T I T TIL 1

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(92,0) = (dace; 0, R)
(¢2,1) = (qrej; L R)
state ¢;
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Cofijofolsf T I T VT I T IL 1~

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(92,0) = (dace; 0, R)
(¢2,1) = (qrej; L R)
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Cofejofolsf T I P T T IR IL 1~

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(92,0) = (dace; 0, R)
(¢2,1) = (qrej; L R)
state ¢;
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Clofrjofolsf TP T T T I T TIL 1

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(92,0) = (dace; 0, R)
(¢2,1) = (qrej; L R)
state ¢;
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Coftjofols f TP P T T I IL 1

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(92,0) = (dace; 0, R)
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Cofijofolsf T I T T T I T IL ]

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(92,0) = (dace; 0, R)
(¢2,1) = (qrej; L R)
state ¢;
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Coftjofols f TP P T T I IL 1

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@,0) +— (¢1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(92,0) = (dace; 0, R)
(¢2,1) = (qrej; L R)
state go
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Cofijofolsf T I T T T I T IL ]

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@1,0) = (q@1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(42,0) = (dace; 0, )
(22,1) = (e, R)
state ¢c;

> u accepted (rejected) by M if M(u) reaches state ggec (¢re;)-
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TURING MACHINE (TM)
Infinite tape, read-write head, and finite program.

input u

——
Coftjofolsf T Y TP IPTR]-

finite program
(¢in.0) — (a1,0,R)
(¢in, 1) = (1,1, R)
(@1,0) = (q@1,0,R)
(@,1) = (¢1,1,R)
(q1,0) = (g2:0,L)
(42,0) = (dace; 0, )
(22,1) = (e, R)
state ¢c;

> u accepted (rejected) by M if M(u) reaches state ggec (¢re;)-

» P (NP): class of languages decidable in poly time by determin-
istic (non-deterministic) Turing machines.
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TURING MACHINE WITH ADVICE (TM/A)

TM with additional tape and advice function a: N — {0, 1}*.

input u

Cilofifojof« ] T T PPV BT P -

Finite
Program

state ¢;,
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TURING MACHINE WITH ADVICE (TM/A)

TM with additional tape and advice function a: N — {0, 1}*.

input u

Cilofifojof« ] T T PPV BT P -

Finite
Program

state ¢;,

pofipoqopijojoufifijo] £ 1 10 f--
——

advice a(|ul)
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TURING MACHINE WITH ADVICE (TM/A)

TM with additional tape and advice function a: N — {0, 1}*.

input u

Cilofifojof« ] T T PPV BT P -

Finite
Program

state ¢;,

pofipoqopijojoufifijo] £ 1 10 f--
— ——

~
advice a(|ul)

» P/poly: class of languages decidable in polynomial time by
Turing machines with poly long advices (TM/poly(A)).
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TURING MACHINE WITH ADVICE (TM/A)

TM with additional tape and advice function a: N — {0, 1}*.

input u

Cilofifojof« ] T T PPV BT P -

Finite
Program

state ¢;,

pofipoqopijojoufifijo] £ 1 10 f--
— ——

~
advice a(|ul)

» P/poly: class of languages decidable in polynomial time by
Turing machines with poly long advices (TM/poly(A)).

> P/poly D P. TM/poly(A)s are “super-Turing”. ..
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MULLER TURING MACHINE (INFINITE WORDS)

TM with Muller acceptance condition (table 7).

input u ---
(fof1fofofu]ififofififofofu]i]i]---

read only

Finite
Program

Muller table T
K state gin
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MULLER TURING MACHINE (INFINITE WORDS)
TM with Muller acceptance condition (table 7).

input u ---
(fof1fofofu]ififofififofofu]i]i]---

read only

Finite
Program

Muller table T
K state gin

» u accepted (rejected) by M if inf(p,) € T (inf(pu) € T).
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MULLER TURING MACHINE (INFINITE WORDS)
TM with Muller acceptance condition (table 7).

input u ---
(fof1fofofu]ififofififofofu]i]i]---

read only

Finite
Program

Muller table T
K state gin

» u accepted (rejected) by M if inf(p,) € T (inf(pu) € T).

» BC(II9): class of w-languages recognizable by Muller Turing
machines.
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» Recurrence brings memory.. ..
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BOOLEAN RECURRENT NEURAL NETWORK

a;1

a2
neuron e GiN
Tq
b.il _
binr /
C;
N M
zi(t+1) =0 D ay-zi(t)+ > bij-u(t) + e
j=1 j=1
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SIGMOIDAL RECURRENT NEURAL NETWORK

a;1

a2
neuron e GiN
Tq
b.il _
binr /
C;
N M
ZL‘i(t—l—l):O' Zaij'xj(t)+zbij'uj(t)+ci
j=1 j=1
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EvVOLVING RECURRENT NEURAL NETWORK

@) a(t)

neuron eoain(t)

N
l‘i(t + 1) =0 Zaij(t) . xj(t) + Zbij(t) . ’u]‘(t) + Ci(t)
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RESULTS: CLASSICAL COMPUTATION

BooLEAN SIGMOID

STATIC

CONCLUSION
o

FSA
Q REG
Kl 56, Mi 67

FSA
R REG
Kl 56, Mi 67
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RESULTS: CLASSICAL COMPUTATION

CONCLUSION
o

BOOLEAN SIGMOID
STATIC
FSA ™
Q REG P
Kl 56, Mi 67 Si & So 95
FSA
R REG
Kl 56, Mi 67
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RESULTS: CLASSICAL COMPUTATION

BOOLEAN SIGMOID
STATIC
FSA ™
Q REG P
Kl 56, Mi 67 Si & So 95
FSA TM/poly(A)
R REG P/poly
Kl 56, Mi 67 Si & So 94
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RESULTS: CLASSICAL COMPUTATION
BOOLEAN SIGMOID
STATIC EvoLviNGg
FSA ™ TM/poly(A)
Q REG P P/poly
KI 56, Mi 67 Si & So 95 Ca & Sill1,14
FSA TM/poly(A) TM/poly(A)
R REG P/poly P/poly
Kl 56, Mi 67 Si & So 94 Ca & Si 11,14
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RESULTS: CLASSICAL COMPUTATION
BOOLEAN SIGMOID
STATIC BI-VALUED EVOLVING EvoLvING
FSA ™ TM/poly(A) TM/poly(A)
Q REG P P/poly P/poly
KI 56, Mi 67 Si & So 95 Ca & Si 11,14 Ca & Sill1,14
FSA TM/poly(A) TM/poly(A) TM/poly(A)
R REG P/poly P/poly P/poly
Kl 56, Mi 67 Si & So 94 Ca & Si 11,14 Ca & Si 11,14
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RESULTS: INFINITE COMPUTATION / DET.

BOOLEAN SIGMOID
STATIC BI-VALUED EVOLVING EvoLviNG
Muller FSA Muller TM super-Turing super-Turing
¢ € BCO(II) = BC(1Y) = BC(I19) = BC(I19)
R Muller FSA  super-Turing super-Turing super-Turing
€ BC(1ly) = BC(119) = BC(I19) = BC(I19)
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RESULTS: INFINITE COMPUTATION / NONDET.

BOOLEAN SIGMOID
STATIC BI-VALUED EVOLVING EvowviNG
Muller FSA Muller TM super-Turing super-Turing
¢ ex} =3} =31 =x1
R Muller FSA  super-Turing super-Turing super-Turing
€34 =3 =31 =t
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HIERARCHY THEOREMS
» Stratifying the “super-Turing world".

» Finite and infinite computation: we can define infinitely many
complexity classes between the Turing and super-Turing levels.

P/poly BC(Tg) =t

BC(IY)
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HIERARCHY THEOREMS
» Stratifying the “super-Turing world".

» Finite and infinite computation: we can define infinitely many
complexity classes between the Turing and super-Turing levels.

P/poly BC(Tg) =t

N11 poty BC(IIE)(a0)
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HIERARCHY THEOREMS
» Stratifying the “super-Turing world".

» Finite and infinite computation: we can define infinitely many
complexity classes between the Turing and super-Turing levels.

P/poly BC(Tg) =t

BC(11)(a1)

BO(I13)(a0)
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HIERARCHY THEOREMS
» Stratifying the “super-Turing world".

» Finite and infinite computation: we can define infinitely many
complexity classes between the Turing and super-Turing levels.

P/poly BC(Tg) =t

BC()(0z)

BC(11)(a1)

BO(I13)(a0)

FINITE STATE MACHINES AND BIO-INSPIRED NEURAL NETWORKS JEREMIE CABESSA



INTRO FSM RNN B1o-INSPIRED NN FSA & RNN I'M & RNN CONCLUSION
o] 00000 00000000e 000000 0000000 0000000000 (o]

INTERMEDIATE CONCLUSIONS

» Recurrent neural networks is a natural model for oracle-based
(super-Turing) computation.
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INTERMEDIATE CONCLUSIONS

» Recurrent neural networks is a natural model for oracle-based
(super-Turing) computation.

» In all these results, the simulation of finite state machines by
recurrent neural networks is not “biologically plausible”.

FINITE STATE MACHINES AND BIO-INSPIRED NEURAL NETWORKS JEREMIE CABESSA



INTRO FSM RNN Bio-INsPIRED NN FSA & RNN I'M & RNN CONCLUSION
o 00000 000000000 ©00000 0000000 0000000000 o

LIMITATIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.
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LIMITATIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.
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LIMITATIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

> Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.
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LIMITATIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

> Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.

* Network should be robust to architectural plasticity and synap-
tic noises.
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B10-INSPIRED RECURRENT NEURAL NETWORK

@) a(t)

neuron eoain(t)
z;

bil.(t)\ 'ﬂ
bwj(t)/ B

\

C; (t)

» Dynamics governed by the Hodgkin-Huxley equations.
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HODGKIN-HUXLEY MODEL

av
; = —Ip —INa —Ix — Ic — Iinput where
I = g -(V-Vp)
INe = 9gnNa-m-h-(V—=VnNg)
dm Moo —m —— 1
dt Tm T e sm (V=Vhm)
ﬂ — M R, = 1 — . v
dt Th = 14+e 5 (V=Vhn)
Ik = gk -n-(V-Vk)
dn Noo — N 1
P Mo = ———————
dt Tn T 1 te s (V=Vpy)
exc exe inh exe inh
Ic = Wipira T Winter T Winter T Woutput T Woutput
erc
Linput = Ginput " Xtinput (t)

V': membrane potential; C' membrane capacitance; I, leakage current; Ing, [k
sodium and the potassium fast currents; I-: synaptic currents coming from the

neighboring neurons; I;,py¢: pulse-like input current. (show simulator)
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SYNFIRE CHAINS

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings induce: (1) self-sustained activities or attractors,
(2) synchronous dynamics; (3) discrete temporal structure; (4)
Robustness against synaptic failures.

* Computational states represented as sustained activities within
synfire rings.
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SYNFIRE RING ARCHITECTURE
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GENERALIZATION TO SYNFIRE RING RNNs
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TRANSITION OF RING ACTIVITIES: FIBRES OF
EXCITATORY & INHIBITORY CONNECTIONS

» The refractory period of the cells allows for a natural inhibitory
system.
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AUuTOMATA & HODGKIN-HUXLEY RNNS WITH
SYNFIRE RINGS

Since the construction is generic, the following result ensues:

THEOREM

Any finite state automaton can be simulated by some
Hodgkin-Huxley based neural network composed of synfire rings.
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» Ring-to-ring constant excitation / one-shot inhibition
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TURING MACHINES & BOOLEAN RNNS WITH
SYNFIRE RINGS

Since the construction is generic, the following results hold:

THEOREM

> Let M be a fixed-space k-tape TM whose every tape is of
length N. Then, there exists some B-RNN composed of O(N)
synfire rings and cells that simulates M in linear time.
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TURING MACHINES & BOOLEAN RNNS WITH
SYNFIRE RINGS

Since the construction is generic, the following results hold:

THEOREM

> Let M be a fixed-space k-tape TM whose every tape is of
length N. Then, there exists some B-RNN composed of O(N)
synfire rings and cells that simulates M in linear time.

» Let M be a k-tape TM. Then, there exists a B-RNN composed
of infinitely many synfire rings that simulates M in linear time.
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FUuTURE WORKS

1. RESERVOIR COMPUTING: ECHO STATE NETWORKS (ESN)
/ LIQUID STATE MACHINES (LSM)
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» Introduce learning — via synaptic plasticity, intrinsic plasticity,
etc. — within this bio-inspired neural architecture.
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FUuTURE WORKS

RESERVOIR COMPUTING: ECHO STATE NETWORKS (ESN)
/ LIQUID STATE MACHINES (LSM)

» Introduce learning — via synaptic plasticity, intrinsic plasticity,
etc. — within this bio-inspired neural architecture.

NEUROMORPHIC COMPUTING
P Implement bio-inspired into neuromorphic hardwares.
BioLoGgy

» Implement this architecture into cultured neural networks (in
vitro): towards neuronal computers. ..
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