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INTRODUCTION

» We recall important results about the sub-Turing, Turing and
super-Turing computational powers of recurrent neural net-
works.
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INTRODUCTION

» We recall important results about the sub-Turing, Turing and

super-Turing computational powers of recurrent neural net-
works.

» We introduce a bio-inspired paradigm for neural computation
based on the concept of synfire rings.

» We show that finite state machines can be simulated by Boolean
recurrent neural networks composed of synfire rings.
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FINITE STATE AUTOMATON

A finite state automaton (FSA) can be represented as a graph
whose nodes and edges are the computational states and
transitions between those.
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FINITE STATE AUTOMATON

A finite state automaton (FSA) can be represented as a graph
whose nodes and edges are the computational states and
transitions between those.

> input u is accepted by A if A(u) reaches a final state
> input u is rejected by A if A(u) otherwise
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TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

input u
——
(OO [T T T T T T 1]
finite program
(¢in,0) = (q1,0,R)
(¢in,1) — (q1,1,R)
(q1,0) = (q1,0,R)
(@,1) = (¢, 1,R)
(q1,0)  +— (g2,b,L)
(@2,0) = (qace;0, R)
(a2,1) = (¢ej;LR)
state ¢,
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TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

input u
——
ClofifoJofs] FT T T T TTHTf-
finite program
(qin,0) = (1,0, R)
(¢in,1) — (q1,1,R)
(q1,0) = (q1,0,R)
(@,1) = (¢, 1,R)
(q1,0)  +— (g2,b,L)
(¢2,0) = (daces0, R
< ) = (Qrej-,l-,R
state qre;

» input u is accepted by M if M(u) reaches the state gy
> input u is rejected by M if M(u) reaches the state ¢,.;
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RNNs & FSA/TM SRs
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function o : N — {0, 1}*.

input u

Cloftfofof«] P T TP T P11 g

Finite
Program

K state gin
HEEN

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS  JEREMIE CABESSA



OUTLINI INTRO FSMs

RNNs & FSA/TM SRs
ooe oo

TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function o : N — {0, 1}*.

input u

Cloftjofof« ] P T TP T P11 ]

Finite
Program
K state gin
olfrjolajoqofufififol 11T J--
— —
S—

advice a(|u|)
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function o : N — {0, 1}*.

input u
Clofrfofofs ] T I T PP PP T T J-
Finite
Program
state g,

(ol fijofifoofifafifol {1117~
— ——

—
advice a(|u|)

» The class of languages recognized in polynomial time by Turing
machines with polynomial advices (TM/poly(A)) is P/poly.
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function o : N — {0, 1}*.

input u

Cloftjofof« ] FT T FT P11 -

Finite

Program
K state gin
ofrfifofiqofoyufufujol 111 [ ]--
N— —

-~
advice a(|ul)

» TM/As are strictly more powerful than TMs: P/poly D P
They are super-Turing...
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fine infinitely many complexity classes between the Turing and
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INTERMEDIATE CONCLUSIONS

» Recurrent neural networks is a natural model for oracle-based
(super-Turing) computation.
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INTERMEDIATE CONCLUSIONS

» Recurrent neural networks is a natural model for oracle-based
(super-Turing) computation.

> In all these results, the simulation of finite state machines by
recurrent neural networks is not “biologically plausible”.

» We propose a novel paradigm for abstract neural computation
that takes into account important biological features.
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SIMULATING FSA wiTH B-RNNS (SUMMARY)

» Proof idea: grid-like B-RNN (state x inputs)...

states (columns)

(smox) syndur

o O O O

0O 0 0O O

0000
00 00
00 00
00 00
0000

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



INTRO
o

OUTLINT

FSMs
[e]e]e}

POWER OF RNNs
000000000

RNNs & FSA/TM

00000
[ 1]

SRs
e]e]

SR-RNNs & FSA/TM
0000000000000 0O0000000

CONCLUSION

000000000000

SIMULATING TMs wiTH ST-RNN[Q]s (PROOF IDEA)

» Simulating a multistack machine.

» Stacks operations carried out by rational-weighted neural nets.

data —

validation |

s

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS

stack s1

encoding top

stack s,

encoding  top

60 -

empty

O

empty

states of M

transition
function
of M

~

= data

= validation

JEREMIE CABESSA



OUTLINE INTRO FSMs POWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 e]e] 0000000000000 0O0000000
oce 000000000000

DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.
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DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.
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DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

» Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINI INTRO FSMs POWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 e]e] 0000000000000 0O0000000
oce 000000000000

DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

» Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.

* Network should be robust to architectural plasticity and synap-
tic noises.
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks.
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).

) ) ) ) O

\— \— A\ O

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINE INTRO FSMs POWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 e0 0000000000000 0O0000000
(o]e] 000000000000

SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).
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» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).
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» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).
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» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks.

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.

» Synfire chains have been theorized as fundamental neuronal
structures (ABELES 82).
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINE INTRO FSMs POWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 oe 0000000000000 0O0000000
(o]e] 000000000000
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» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINE INTRO FSMs POWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 oe 0000000000000 0O0000000
(o]e] 000000000000

SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINE INTRO FSMs POWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 oe 0000000000000 0O0000000
(o]e] 000000000000

SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.

» Hence, the successive computational states are encoded into
cyclic attractors.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.

» Hence, the successive computational states are encoded into
cyclic attractors.

» The transitions between such attractors are perfectly controlled
by the inputs.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.

» Hence, the successive computational states are encoded into
cyclic attractors.

» The transitions between such attractors are perfectly controlled
by the inputs.

» The global computational process is robust to various kinds of
architectural plasticities and noises.
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BooLEAN RNNs

» We simulate finite state automata with Boolean recurrent neu-
ral networks composed of synfire rings.
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GENERAL CONSTRUCTION
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AUTOMATA & BOOLEAN RNNS WITH SYNFIRE
RINGs

Since the construction is generic, one has the following result:

THEOREM

Any finite state automaton can be simulated by some Boolean
neural network composed of synfire rings.
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IzHIKEVICH RNNs

» We now simulate finite state automata with |zhikevich-based
recurrent neural networks composed of synfire rings.
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[ZHIKEVICH SPIKING NEURAL NETWORKS

This construction can be extended to the case of Izhikevich Spiking
neurons.
The lIzhikevich differential equations are:

v =0.0402+504+140 —u+ 1
v =a(bv—u)

with the auxiliary after-spike reseting:

if v>30mV, thenv < cand u <+ u-+d

» v: membrane potential
> wu: membrane recovery variable
» I: synaptic currents

» a,b,c,d: dimensionless parameters
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AUTOMATA & IZHIKEVICH RNNS WITH SYNFIRE
RINGs
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F1GURE: Raster plot of the simulation and activity of one spiking neuron
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AUTOMATA & IZHIKEVICH RNNS WITH SYNFIRE
RINGs

Since the construction is generic, one has the following result:

THEOREM

Any finite state automaton can be simulated by some (noisy)
Izhikevich spiking neural network composed of synfire rings.
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HoDGKIN-HUXLEY RNNSs

» We finally simulate finite state automata with Hodgkin-Huxley-
based recurrent neural networks composed of synfire rings.
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HODGKIN-HUXLEY NEURONS (SOFTWARE DEMO)

0.01(10 — Vi) Vi
(Vi) = — = Vm) (Vi) = 0.125 exp(—
an( eXp(mIg/’")fl Bn(Vin) exp( 30 )
0.1(25 — Vin) Vi
(€2 ( ) eXp(ZSI(}/m) 1 ﬁ ( ) exp( 18 )
Vi 1
an(Vin) = 0.07 exp(—=) Brn(Vin) = exp(BVar) 1 1
10
& 0 (Vi) (1= 1) = B (Vi)
B — (Vi) (1 = ) = B (Vi m
dh
P ap(Vim)(1 = h) = Bu(Vin)h
de _ 4 _ 3 _
CmW:I—gKTL (Vm_VK)_gNam h(Vm_VNa)_gl(Vm_‘/l)
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GENERAL CONSTRUCTION
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SIMULATION

Play movie...
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AUTOMATA & HODGKIN-HUXLEY RNNS WITH
SYNFIRE RINGS

Since the construction is generic, one has the following result:

THEOREM

Any finite state automaton can be simulated by some
Hodgkin-Huxley based neural network composed of synfire rings.

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINE INTRO FSMs POWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 e]e] 0000000000000 00000000
(o]e] @00000000000

FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kind of (fibres of) connections.

> excitatory

O——0
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FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kind of (fibres of) connections.

> one-shot excitatory
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FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kind of (fibres of) connections.

> excitatory / inhibitory
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FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kind of (fibres of) connections.

> one-shot inhibitory
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FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kind of (fibres of) connections.

» one-shot inhibitory / one-shot inhibitory
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FIBRES OF CONNECTIONS & INHIBITORY SYSTEM

We consider the following kind of (fibres of) connections.

> cell to ring excitatory
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PosSITION TAPE

» Used to store the current position of the head.
» Composed of a “left” and a “right” strip.

» excitatory / inhibitory connections.

©—> strip R
<—© strip L
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» Used to store the current position of the head.
» Composed of a “left” and a “right” strip.

» excitatory / inhibitory connections.
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<—© strip L

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINI INTRO FSMs POwWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION

[e] [e]e]e} 000000000 00000 e]e] 0000000000000 0O0000000
(o]e] O®@0000000000

PosSITION TAPE

» Used to store the current position of the head.
» Composed of a “left” and a “right” strip.

» excitatory / inhibitory connections.
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SYMBOL TAPE

» Used to store the symbols written on the tape.
» Composed of a “blank”, a “0" and a “1" strip.

» one-shot inhibitory / one-shot inhibitory connections.

QO O OO O O 0O O i
OO O O O O O © - ww
O OO O O OO O w5
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SYMBOL TAPE

» Used to store the symbols written on the tape.
» Composed of a “blank”, a “0" and a “1" strip.

» one-shot inhibitory / one-shot inhibitory connections.

QO OO0 0 @ @ @ i
@ O 0O @ @ O ©O © - =wwo
O ©@ @ O O O O O

TURING-COMPLETE COMPUTATION WITH RECURRENT NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS JEREMIE CABESSA



OUTLINE NTRO FSMs >OWER OF RNNs RNNs & FSA/TM SRs SR-RNNs & FSA/TM CONCLUSION
o 000 oo

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOO

CACHE TAPE

> Used to store the symbol under the current head'’s position.
» Composed of a “blank”, a “0" and a “1" strip.

» one-shot inhibitory / one-shot inhibitory connections.

strip ¢l
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TICy)-TIC-TAC PROCEDURE

“ticy” cell sets the initial positions / configuration of the tape(s).
> “tic" cell triggers the copy of the current symbol into the cache.
> “tac” cell triggers the writing of a new symbol and moving of

the head (cf. next slide).
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PrROGRAM RINGS

» One ring per event “state ¢; & current symbols a1, ..., ax
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PrROGRAM RINGS

» One ring per event “state ¢; & current symbols aq,...,a;

» Program to program (excitatory): to switch between rings.
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PrROGRAM RINGS

» One ring per event “state ¢; & current symbols aq,...,a;
» Program to program (excitatory): to switch between rings.

» Cache to program (excitatory): to detect current symbols.
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PrROGRAM RINGS

v

One ring per event “state ¢; & current symbols ay,...,ax

v

Program to program (excitatory): to switch between rings.

v

Cache to program (excitatory): to detect current symbols.

v

Program to symbol (one-shot excitatory): to write symbols.
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PrROGRAM RINGS

v

One ring per event “state ¢; & current symbols ay,...,ax

v

Program to program (excitatory): to switch between rings.

v

Cache to program (excitatory): to detect current symbols.

v

Program to symbol (one-shot excitatory): to write symbols.

v

Program to position (one-shot excitatory): to move heads.
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PrROGRAM RINGS

» One ring per event “state ¢; & current symbols aq,...,a;
» Program to program (excitatory): to switch between rings.
» Cache to program (excitatory): to detect current symbols.
» Program to symbol (one-shot excitatory): to write symbols.
» Program to position (one-shot excitatory): to move heads.

» “tac” cell to program (excitatory): triggers the writing and
moving procedures.
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PrROGRAM RINGS

states

tac Q

suoremsyuos sode)

from cache tape(s) to symbol and position tape(s)
reading symbols (one shot excitatory)
writing symbols and mowving heads
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PUTTING EVERYTHING TOGETHER...
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TURING MACHINES & BOOLEAN RNNS WITH
SYNFIRE RINGS

Since the construction is generic, one has the following result:

THEOREM

Any Turing machine can be simulated by some Boolean neural
network composed of synfire rings (up to assuming that the
number of rings can be extended in an unbounded manner).
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TURING MACHINE RECOGNIZING L = {0"1" :n > 0}

» TM modified such that it never stagnates on a particular state. . .
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SIMULATION

Play two movies...
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FUTURE WORK: LEARNING WITHIN THE SYNFIRE
RING ARCHITECTURE
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CONCLUSIONS

» Recurrent neural networks represent a natural models for oracle-
based computation, beyond the Turing limits.
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CONCLUSIONS

» Recurrent neural networks represent a natural models for oracle-
based computation, beyond the Turing limits.

» We introduced a new paradigm of neural computation based
on the concept of synfire rings.
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CONCLUSIONS

» Recurrent neural networks represent a natural models for oracle-
based computation, beyond the Turing limits.

» We introduced a new paradigm of neural computation based
on the concept of synfire rings.

» We intend to study the issue of learning within the synfire ring
architecture.
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CONCLUSIONS

» Recurrent neural networks represent a natural models for oracle-
based computation, beyond the Turing limits.

» We introduced a new paradigm of neural computation based
on the concept of synfire rings.

» We intend to study the issue of learning within the synfire ring
architecture.

» Towards neuronal computers... By growing cultures of neurons
according to the synfire ring architecture, one could in principle
simulate finite state machines with biological neural networks.
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