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Introduction

I We assume that some aspect of information processing in the

brain can be approached from the perspective of computability

theory.

I The computational capabilities of recurrent neural networks

have mainly been studied in the context of classical computa-

tion (McCulloch & Pitts, Turing, Kleene, von Neumann, Min-

sky, Papert,..., Siegelmann & Sontag,...).

I Here, we introduce a natural model of nondeterministic recur-

rent neural networks and study their expressive power in terms

of their attractor dynamics, i.e., in the context of infinite (or

non-terminating) computations.
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Topology

The Cantor space {0, 1}!
the set of infinite sequences of bits
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Topology

The basic open set 0 1 0 {0, 1}!
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Topology

General open set:
countable union of basic open sets

The Cantor space {0, 1}!
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Topology

The space (BN )!

the set of infinite sequences of N -dim. Boolean vectors
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Topology

I An ω-language L ⊆ (BN )ω is analytic (Σ1
1) iff it is the first

projection of some Π0
2-set X ⊆ (BN )ω×{0, 1}ω. some text to

fill the space...

L = ⇡1(X)

⇧0
2-set X

{0, 1}! (BN )! ⇥ {0, 1}!

(BN )!
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Topology

I An ω-language L ⊆ (BN )ω is analytic (Σ1
1) iff it is the first

projection of some Borel set X ⊆ (BN )ω × E, where E is a

Polish space.

Borel set X

L = ⇡1(X)

E

(BN )!

(BN )! ⇥ E
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Static recurrent neural networks

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t+ 1) = σ

(
N∑

j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci

)
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Evolving recurrent neural networks
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Hybrid recurrent neural networks
We consider RNNs with Boolean input cells, sigmoid internal cells,

Boolean output cells, and working on infinite input streams.

· · · · · ·
Boolean
input
cells

Boolean
output
cells

Sigmoid
internal

cells

· · ·

Spatio-temporal
pattern

Infinite Boolean
induced stream

Infinite Boolean
input stream
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I The attractors are assumed to be classified into two possible

kinds: meaningful or spurious.
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I An infinite Boolean input stream is accepted by N if the corre-

sponding Boolean output stream visits a meaningful attractor.
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I An infinite Boolean input stream is rejected by N if the corre-

sponding Boolean output stream visits a spurious attractor.
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Hybrid recurrent neural networks
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I The set of all input streams that are accepted by N is the

ω-language recognized by N .
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R
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Evolving recurrent neural networks
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Nondeterminism

Suppose that the neural net contains K evolving synaptic weights:

I AK-dimensional vector ~w(t) = (w1(t), . . . , wK(t))T ∈ QK or RK

describes the value of the K synaptic weights at time t.

I A possible evolution is an infinite sequence

e = ~w(0) ~w(1) ~w(2) · · · ∈ (QK)ω or (RK)ω

which describes the synaptic weights at successive time steps.

I We suppose that each network is provided with a corresponding

evolution set: a closed set E ⊆ (QK)ω or (RK)ω describing all

possible evolutions of the net.

I Nondeterminism: At the beginning of the computation, the

network selects one possible evolution e ∈ E, and sticks to it

throughout its whole computational process.
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Nondeterminism

E ✓ (QK)! or (RK)!
Evolution setA possible evolution e = ~w(0) ~w(1) ~w(2) · · · 2 QK or RK

time t

QK or RK
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Nondeterminism

E ✓ (QK)! or (RK)!
Evolution setA possible evolution e = ~w(0) ~w(1) ~w(2) · · · 2 QK or RK

~w(t) =

0
BBB@

w1(t)
w2(t)

...
wK(t)

1
CCCA 2 QK or RK

time t

QK or RK
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Nondet. hybrid recurrent neural networks
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input
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output
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internal

cells

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
output stream

Infinite Boolean
input stream

I The attractors are assumed to be classified into two possible

kinds: meaningful or spurious. Here is some blank text to fill

the space...
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Nondet. hybrid recurrent neural networks
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Boolean
input
cells

Boolean
output
cells

Sigmoid
internal

cells

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
output stream

Infinite Boolean
input stream

I An infinite Boolean input stream is accepted by N if there

exists a possible evolution e ∈ E such that the corresponding

Boolean output stream visits a meaningful attractor.
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language recognized by N . Here is some blank text to fill the
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Expressive power of Nondeterministic Recurrent Neural Networks Jérémie Cabessa



Introduction Topology Det. hybrid RNNs Nondet. hybrid RNNs Results Conclusion

Results

Theorem

Let L ⊆ (BM )ω. The following conditions are equivalent.

I L ∈ Σ1
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Results

Proposition

Let L ∈ Σ1
1. Then L is recognizable by some nondet. evolving

RNN[Q].

Proof (sketch):

I Since L ∈ Σ1
1, there exists some Π0

2 set X ⊆ (BM )ω×{0, 1}ω
such that L = π1(X).

I X can thus be encoded into some infinite word wX ∈ {0, 1}ω.

I We can then build an nondet. evolving RNN[Q] – whose one

of its evolving synaptic weights follows wX – which, on input

s ∈ (BM )ω and evolution e ∈ {0, 1}ω, enters a meaningful

attractor iff (s, e) ∈ X.

I It follows that L(N ) = π1(X) = L.
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Results

Proposition

Let N be some nondet. evolving RNN[R]. Then L(N ) ∈ Σ1
1.

Proof (sketch):

I The function fN : (BM )ω × E → (BP )ω associated with the

dynamics of N is of Baire class 1 (preimage of a Σ0
1 is a Σ0

2).

I Accordingly, the ω-language L(N ) can be expressed as the first

projection of a finite Boolean combination of Σ0
3 and Π0

3 sets

(i.e., of a Borel set) of the Polish space (BM )ω × E.

I Therefore, L(N ) ∈ Σ1
1.
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Conclusion

I We provided a characterization of the expressive power of re-

current neural networks in terms of their attractor dynamics.

I In general, the super-Turing computational capabilities of neu-

ral models raises the question of hypercomputation.

I Current physical theories are consistent with the possibility of

hypercomputational systems (quantum, relativistic, etc.). No

such systems are currently feasible or harnessable.

I Philosophical and scientific literature about hypercomputation

is however flourishing.
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